

Copyright 2007 ICONICS, Inc. Page 1 of 1 GenBroker - OLE Automation Support.doc

December 2007

GenBroker – OLE Automation Support

Description: Guide to reading and writing OPC data using
VBA and VBScript
OS Requirement: Win 2000 Pro/Server, XP Pro, Server 2003
General Requirement: General knowledge of scripting in VB
and VBA along with an understanding of OPC, OLE
automation, and GenBroker

Using VBA

In the VBA Editor of your application, go to Tools
References and click the browse button to browse to C:
\Program Files\Common Files\ICONICS\GenClientWrapper.dll.
Now the GenClientWrapper library and all of its functions are
available to you. The objects you have at your disposal are:

• Client
• DataPoint
• SecurityPoint

A DataPoint is what you would call an OPC tag, and each has
the following properties and methods:

• GetValueEtc (value, quality, timestamp, milliseconds)
• SyncWrite (newVal, [millisecondsTimeout=-1])
• LastWriteError
• Quality
• State
• Timestamp
• Value
• WritesPending

To get you started, here is a simple script that reads a tag from
the ICONICS OPC Simulator, then increments its value by 1:

Dim client As GENCLIENTWRAPPERLib.Client
Dim dp As GENCLIENTWRAPPERLib.DataPoint
Dim tag As String
Dim value As Variant, qual As Variant
Dim ts As Variant, tsms As Variant

Set client = CreateObject("GenClientWrapper.Client")
tag = " ICONICS.Simulator.1\SimulatePLC.OUTPUTS.FLOAT1"
Set dp = client.RequestDataPoint(tag, 100, 0)
While dp.State <> GC_POINT_OK_UPDATED
' Do nothing until point is ready
Wend

'Get tag information
dp.GetValueEtc value, qual, ts, tsms
MsgBox "Value: " & value & vbCrLf & "Quality: " & qual & vbCrLf
_ & "Timestamp: " & ts & vbCrLf & "Milliseconds: " & tsms
dp.SyncWrite value + 1

VB Script

VB Script works a little differently than VBA. The following is
the same example in VB Script:

Dim client
Dim dp
Dim tag
Dim value, qual, ts, tsms

Set client = CreateObject("GenClientWrapper.Client")
tag = " ICONICS.Simulator.1\SimulatePLC.OUTPUTS.FLOAT1"
Set dp = client.RequestDataPoint(tag,100,0)

While dp.State <> 3
' Do nothing until point is ready to be read
Wend

'Get tag information
dp.GetValueEtc value, qual, ts, tsms
MsgBox "Value: " & value & vbCrLf & "Quality: " & qual & vbCrLf
& "Timestamp: " & ts & vbCrLf & "Milliseconds: " & tsms
dp.Value = value + 1

While dp.WritesPending
' Do nothing until value has been written
Wend

VBA vs VB Script

SyncWrite: This works only in VBA. Writing in VBScript must
be done directly through the Value property of each DataPoint.

From the above example, in VBA the line of code used is:

dp.SyncWrite value + 1
In VBScript, however, the line of code is:

dp.Value = value + 1

WritesPending: This is intended for use in VBScripts. Since
the write update does not take place right away, there is an extra
WritesPending property added so that you can delay the
termination of your script until it is done writing the value.
There is no need to do this in VBA when using SyncWrite.
For example:

While dp.WritesPending
'Wait for value to be written
Wend

Performance Considerations

Another major difference to consider is that VBA supports
global variables and VB Script does not. This means that in
VBA you can separate the script into three smaller scripts or
procedures. For example, the GenClient object is created and
the DataPoint(s) are initialized in one event script such as
PreRuntimeStart. Then the objects are manipulated in one or
more runtime scripts (a timer ActiveX for example). Finally, the
objects are destroyed in an event script such as
PostRuntimeStop.
With VB Script, you must encapsulate all of this code in one
script. While this works reliably, it is less efficient than the
VBA method, and therefore you cannot expect the same
performance out of your application.

