# Altium Designer 14: обзор новых возможностей

### Алексей Сабунин (г. Москва)

О выходе новой версии программы Altium Designer 14 было объявлено на форуме «Altium: навстречу российскому пользователю», который состоялся в Москве 8 октября 2013 года. В статье рассмотрены наиболее важные добавления, которые появились в этой версии.

## Проектирование гибкожёстких печатных плат

Гибкая печатная плата (ГПП) – это плата, выполненная на тонком и гибком основании. Основная область использования ГПП – соединители деталей электронных устройств на базе жёстких печатных плат. В этом случае они служат заменой кабельных соединений. Структура гибкой платы многослойная. Она состоит из основания, адгезивов, материала проводящего слоя и защитного слоя.

Гибкожёсткие печатные платы (ГЖПП) - это изделия, для производства которых применяют технологии производства традиционных (жёстких) и гибких плат. На данный момент ГЖПП (см. рис. 1) - наиболее сложные из производимых плат; их простейшим вариантом являются гибкие платы с локальным механическим усилением. Локальное усиление используют, как правило, в зоне электрического контакта ГПП с противоположной контактным площадкам стороны. Оно обеспечивает надёжность электрического соединения между гибкой платой и разъёмом на жёсткой печатной плате. В более сложных конфигурациях гибкую часть ГЖПП обычно используют в качестве соединительного шлей-



Рис. 1. Гибко-жёсткая печатная плата

фа между двумя (или более) жёсткими многослойными платами.

В современных электронных изделиях можно встретить гибкожёсткие печатные платы довольно часто, и преимущества от их использования очевидны. В российской действительности такие платы применяются редко, что связано, в первую очередь, со спецификой нашей электронной промышленности. Однако производители плат (в том числе и в России) заявляют о возможности изготовления таких конструкций.

Многие производства, которые занимаются изготовлением ГПП и ГЖПП, уже освоили данные технологии. Однако системы автоматизированного проектирования (САПР), на данный момент, не имеют специализированных инструментов для создания таких плат, поскольку к ним предъявляются специфические требования: особая конфигурация проводников в гибкой части, усиленные контактные площадки и др. Этим и другим технологическим аспектам проектирования ГЖПП уделено много внимания в литературе [2-5]. Инженеры-конструкторы нашли выход из ситуации и пытались разрабатывать такие платы в САПР (P-CAD, Altium Designer и др.), создавая различные контуры для гибких и жёстких частей и контролируя набор правил для гибкой части платы. При этом никак не учитывалось положение компонентов на разных жёстких частях ГЖПП в итоговой конструкции, т.к. планировка размещения осуществлялась только в одной плоскости.

На международном рынке ГЖПП используются всё активнее. Эта тенденция способствовала развитию САПР, во многие из которых были добавлены специальные средства проектирования ГЖПП. В новой версии Altium Designer 14 для этого появился целый ряд инструментов:

- управление стеком слоёв индивидуально для разных регионов платы;
- возможность указать линии и радиусы сгиба части ГЖПП и просмотреть такую плату в трёхмерном режиме;
- возможность задавать индивидуальные правила для разных регионов платы (гибкой и жёсткой частей).

Остановимся подробнее на технической стороне данного вопроса и посмотрим, как это реализовано в Altium Designer 14.

Шаг 1 – контур платы.

ГЖПП создаётся как обычная плата, и на первом шаге необходимо определить её контур. В данном случае задаётся контур всей ГЖПП, даже если в разных (жёстких и гибких) частях данной платы будет разный набор слоёв, который не будет совпадать в различных регионах платы. Для создания контура платы используются команды в меню Design>Board Shape>Define From Selected Objects (создать из выделенных объектов) или Design>Board Shape>Define From 3D Body (создать из 3D-модели). Первая команда обеспечивает импорт контура из механической САПР (Компас, SolidWorks и др.), вторая - импорт реалистичной трёхмерной модели платы в формате STEP (SolidWorks, Creo и др.). Контур может быть получен и более традиционным способом - созданием контура в механическом слое.

Шаг 2 – определение структуры платы.

Сама процедура описания стека слоёв в плате не изменилась и может быть выполнена в любом режиме работы (2D, 3D) через меню *Design>Layer Stack Manager* (см. рис. 2). Здесь появилась возможность задать несколько стеков (в случае, показанном на рисунке 2, это стеки *Rigit и Flex*) и присвоить каждому из них своё обозначение. Для стека можно указать набор слоёв и каждому слою задать необходимый набор характеристик (в верхней части окна *Layer Stack Manager*). Позже каждый из таких стеков можно будет назначить одному из регионов платы.

#### Шаг 3 – разделение регионов.

Необходимо показать, где будут находиться разные регионы платы, определяющие гибкие и жёсткие части ГЖПП. Для этого используется отдельный режим работы с платой - Board Planning Mode, который дополняет имеющиеся режимы работы 2D Layout Mode и 3D Layout Mode, доступные в меню View, или горячими клавишами 1, 2 и 3 соответственно. После включения режима Board Planning Mode вид платы изменится (см. рис. 3), и в меню View появятся команды Define (Delete) Split Line – добавление (удаление) линий, разделяющих гибкую и жёсткую части. Такие линии рисуются поверх контура платы и могут быть только прямыми, соединяющими две точки на контуре платы. Если создать такую линию, то две образовавшихся части платы могут иметь индивидуальные настройки. Для этого следует зайти двойным кликом в свойства региона (окно Board Region на рис. 3) либо в панели РСВ выбрать режим Laver Stack Region (Управление регионами). Каждому региону можно задать пользовательское название и выбрать соответствующий стек (из заданных на шаге 2). Гибкая и жёсткая части платы в режиме Board Planning Mode отображаются по-разному и имеют некоторые ограничения, например,

|                                                  |   | Laver Name     | Type             | Material         | Thickness (mm) | Dielectric | Material                 | Dielectric                                 | Pullback (mm)  | Orientation     |
|--------------------------------------------------|---|----------------|------------------|------------------|----------------|------------|--------------------------|--------------------------------------------|----------------|-----------------|
|                                                  | R | Top Overlay    | Overlag          |                  |                |            |                          | Constant                                   |                |                 |
|                                                  | 1 | Top Solder     | Solder Mask /Cov | Surface Material | 0.01016        | Solder Res | siet                     | 3.5                                        |                |                 |
|                                                  |   | Top Laver      | Signal           | Cooper           | 0.03556        |            |                          |                                            |                | Too             |
|                                                  | V | Dielectric 1   | Dielectric       | None             | 0.32004        | FR-4       |                          | 4.8                                        |                | Top             |
|                                                  | V | Mid-Laver 1    | Simal            | Cooper           | 0.03556        |            |                          |                                            |                | Not Allowed     |
|                                                  | V | Dielectric 2   | Dielectric       | None             | 0.32004        | FR-4       |                          | 4.8                                        |                |                 |
|                                                  | 7 | Mid-Laver 2    | Signal           | Cooper           | 0.03556        |            |                          |                                            |                | Top             |
|                                                  | 7 | Dielectric 3   | Dielectric       | None             | 0,1            | FR-4       |                          | 4.8                                        |                |                 |
|                                                  | 1 | Bottom Layer   | Signal           | Copper           | 0.03556        |            |                          |                                            |                | Bottom          |
|                                                  | • | Bottom Solder  | Solder Mask/Cov  | Surface Material | 0.01016        | Solder Res | sist                     | 3.5                                        |                |                 |
|                                                  | 1 | Bottom Overlay | Overlay          |                  |                |            |                          |                                            |                |                 |
| Total Thickness: 0.90264mm                       |   | Add Layer 🔹    | Delete Layer     | Move Up Mo       | ive Down       |            |                          | Drill Pi                                   | airs Impedar   | nce Calculation |
| Total Thickness: 0.90264mm<br>ayout<br>Rigid Rex |   | Add Layer 🔹    | Delete Layer     | Move Up Mo       | ive Down       |            | Stack<br>Name:<br>Fligid | Drill Pr<br>Properties                     | airs   Impedar | nce Calculation |
| Total Thickness 0 90264mm                        |   | Add Layer      | Delete Layer     | Move Up Mc       | ve Down        |            | Stack<br>Name:<br>Rigid  | Drill Pr<br>Properties<br>x<br>sck. In Use | irs   Impedar  | nce Calculation |

Рис. 2. Управление структурой платы

в гибкой части могут быть добавлены линии сгиба.

Шаг 4 – линии сгиба гибкой части ГЖПП.

Создание линий стиба выполняется в режиме *Board Planning Mode*, который показан на рисунке 3. Для создания такой линии используется инструмент *Design>Define Bending Line*, который может быть применён только к гибкой части ГЖПП. Линия сгиба должна соединять две точки контура гибкой части и может представлять собой только один отрезок. После создания линии сгиба можно двойным кликом зайти в её свойства или через панель *PCB* (в режиме *Layer Stack Region*, как было показано выше) в разделе *Bending* 



Рис. 3. Управление регионами платы

*Line* (линия сгиба) указать угол и радиус сгиба.

Шаг 5 – просмотр ГЖПП в законченном виде.

Предусмотрена возможность согнуть плату по линиям сгиба и просмотреть её в том виде, в котором она будет использована в конечном изделии. Такой просмотр позволит определить сопряжение между компонентами, размещёнными на разных жёстких частях ГЖПП с помощью маркера *Fold State* в панели *PCB* (см. рис. 3).

#### Встраиваемые компоненты

Традиционно монтаж электрических компонентов на печатных платах выполнялся либо выводами в сквозные отверстия, либо на поверхность платы. Однако технологический прогресс обеспечил встраивание электрических компонентов в тело платы (см. рис. 4). Первыми компонентами стали тонкоплёночные резисторы, которые изготавливались травлением рисунка из двухслойной фольги медь/ резистивный слой (никелевая сталь). С помощью тонкого диэлектрика между близко расположенными поверхностями медной фольги формировались конденсаторы, а индуктивности получались травлением витков медной фольги при изготовлении внутренних слоёв.

Дальнейшее развитие технологий обеспечило установку небольших пассивных дискретных компонентов внутри платы. Это позволяет в ходе операции прессования многослойной платы герметизировать эти встроенные компоненты или печатать на слоях резисторы, конденсаторы и индуктивности. Многочисленные пассивные устройства могут быть корпусированы либо с выводами, либо для поверхностного монтажа (SMT). Интегрированные пассивные компоненты – это общий термин, обозначающий несколько пассивных компонентов, использующих одну подложку и корпус.

В общем случае встроенные компоненты - это компоненты, сформированные или установленные внутри многослойной подложки межсоединений. Они могут быть как пассивными, так и активными. Сформированные компоненты производитель печатной платы изготавливает самостоятельно внутри подложки межсоединений (в противоположность поверхностному компоненту), и они называются формируемыми. Встроенные пассивные и активные компоненты, в отличие от сформированных в плате, также могут быть установлены внутри печатной платы (для этого используются традиционное оборудование и технологии SMT-монтажа). Такая технология хорошо отработана на существующих SMTлиниях с последующей опрессовкой по технологии многослойных печатных плат.

Как и в случае с ГЖПП, тенденции развития технологий встраиваемых компонентов не были поддержаны производителями САПР, и лишь в последние два года стали появляться инструменты для применения таких компонентов на печатных платах. В программу Altium Designer 14 также была добавлена возможность использования встраиваемых компонентов.

С точки зрения пользователя для применения встраиваемых компонентов в Altium Designer 14 необходимо выпол-



Рис. 4. Встроенные компоненты

нить всего два дополнительных действия. Во-первых, на уровне библиотеки определить геометрию выреза во внутренних слоях платы, который будет формироваться при помещении данного компонента. Во-вторых, на самой плате необходимо задать слой, на котором размещён компонент, и его ориентацию (вверх/вниз).

Шаг 1 – определение геометрии полости.

Компонент, установленный внутри платы, будет занимать некоторое пространство, и информация об этом должна быть задана на стадии создания библиотечного компонента. В библиотеке для посадочного места необходимо нарисовать полигон (используя команду *Place>Solid Region*), после чего в его настройках задать дополнительные следующие параметры (см. рис. 5):

*Kind* (тип) – *Cavity definition* (описание полости). Полигон будет задан как фигура, определяющая геометрию полости для встраиваемого компонента;

Layer (слой) – для полостей необходимо задействовать один из пользовательских слоёв (*Mechanical*), который будет техническим (т.е. не будет использоваться в проектировании) и будет хранить геометрию выреза;

*Height* (высота) – в данном случае, это глубина полости.

Шаг 2 – настройки компонента на плате.

На самой плате необходимо зайти в свойства компонента и указать в поле *Layer* слой, на котором должен быть установлен данный компонент. Направление компонента задаётся в настройках *Design>Layer Stack Manager* в поле *Orientation*.

## **Дополнительные** возможности

По сравнению с описанными выше новыми возможностями, которые предоставляют пользователям принципиально новые технологии разработки в Altium Designer, другие добавления в новую версию не столь радикальны. Отметим следующее:

Массив переходных отверстий в регионе. Инструмент Via Stitching, который позволяет формировать массив переходных отверстий для объединения полигонов земли на разных слоях, появился в версии Altium Designer 13. В новой версии его возможности были расширены – теперь данный массив отверстий можно формировать в заданном регионе (см. рис. 6);

Расширенные правила для дифференциальных пар. Теперь правила для дифференциальных пар можно применять к комнатам (Room) и слоям, задавая различные параметры пары в разных регионах платы и запрещая или разрешая трассировку пар в определённых слоях;

Улучшенные возможности импорта формата DXF. Реализована поддержка всех графических примитивов (дуги, окружности и т.д.), которые могли быть созданы и сохранены в формате DXF. Ранее такие примитивы разбивались либо на набор точек или линий, либо не импортировались. В новой версии Altium Designer 14 поддерживаются все версии AutoCAD, вплоть до AutoCAD 2013;

Импорт топологии из EAGLE. Система Eagle довольно часто используется любителями, т.к. имеет набор базовых инструментов для создания топологии и проста в использовании. Теперь проекты, созданные в Eagle, могут быть автоматически переданы в Altium Designer;

Обновления Altium Vault Server (AVS). Одновременно с Altium Designer 14 вышла новая версия программы AVS 1.2, где произошли существенные изменения. Были добавлены возможности регистрации IBIS-моделей в хранилище, хранения настроек и функция Content Card, позволяющая копировать данные между разными хранилищами. Обновления обеспечивают копирование компонентов из доступной подписчикам базы Altium Contetn Vault на корпоративный сервер Vault, при этом автоматически копируются и все связанные объекты (символы, модели и др.). Об изменениях в Altium Vault Server 1.2 будет подробно рассказано в одной из следующих статей.



Рис. 5. Определение полости (Cavity), в которой будет установлен компонент

|                                                                         | Via Style            |                     |                             |
|-------------------------------------------------------------------------|----------------------|---------------------|-----------------------------|
| Net GND V                                                               |                      | The Middle Detters  | Cull Charle                 |
| Constrain Area Edit Area                                                | Simble               | O Tob-widdle-pottom | Euli Stack                  |
| Offset X: 0mm                                                           |                      |                     |                             |
| Y: Omm                                                                  | Hole Size            | 0.6mm               |                             |
|                                                                         | <u>H</u> ole Size    |                     |                             |
|                                                                         |                      | Diame               | ter 1mm                     |
|                                                                         |                      |                     |                             |
|                                                                         |                      |                     |                             |
| 000                                                                     |                      |                     |                             |
|                                                                         |                      |                     |                             |
| ←→                                                                      |                      | Load values         | from Routing Via Style Rule |
| Crid                                                                    |                      |                     |                             |
| I.Smm                                                                   | Properties           | Solder Mask Exp     | ansions                     |
| Stagger alternate rows                                                  | Start Lauer Top Lave | Evpansion y         | value from rules            |
| Same Net Clearances                                                     |                      |                     |                             |
| No applicable design rule detected.                                     | End Layer Bottom     | layer               |                             |
| The default clearance defined below will be used.                       |                      | Force comp          | lete tenting on top         |
| Create new clearance rule                                               |                      | Force comp          | lete tenting on bottom      |
| Create men creatance ratem                                              |                      |                     |                             |
| Default Via/Pad 0.2mm                                                   |                      |                     |                             |
| Default Via/Pad 0.2mm                                                   |                      |                     |                             |
| Default Via/Pad<br>Clearance 0.2mm<br>Min Boundary 1mm<br>Clearance 1mm |                      |                     |                             |

Рис. 6. Формирование массива переходных отверстий в заданной области

#### Выводы

Новые возможности Altium Designer 14 следуют тенденциям развития современных технологий в разработке электроники. Поддержка функционала разработки гибкожёстких печатных плат и встраиваемых компонентов даёт возможность пользователям САПР полноценно проектировать устройства с применением данных технологий, не придумывая обходные пути. Просмотр готового устройства ГЖПП или платы со встраиваемыми компонентами в трёхмерном режиме, максимально приближенном к реалистичному, позволяет обнаружить ошибки на ранней стадии проекта, что, в свою очередь, экономит временные и материальные ресурсы.

### Литература

1. IPC-2223A. Sectional Design Standard for Flexible Printed Boards. www.ipc.org.

- Акулин А. Проектирование гибкожёстких печатных плат: материалы, конструкции и особенности проектирования. Технологии в электронной промышленности. № 8. 2007.
- Акулин А. Гибкие и гибкожёсткие печатные платы. Комментарии к стандарту IPC-2223А. Электронные компоненты. № 10 и 11. 2005.
- Медведев А., Мылов Г. Гибкие платы: преимущества и применение. Компоненты и технологии. № 9. 2007.
- 5. *Медведев А., Мылов Г.* Развитие технологий элементов электрических межсоединений в электронных системах. Печатный монтаж. № 1. 2012.
- Печатные платы: Справочник. Под ред. К.Ф. Кумбза. Техносфера. 2011.
- Сабунин А.Е. Altium Designer. Новые решения в проектировании электронных устройств. Солон-Пресс. 2009.
- 8. https://www.youtube.com/user/Sabunin Alexey.