IS
—

A
hilscher

COMPETENCE IN
COMMUNICATION

Device Driver Manual

Linux CIF Device Driver

Hilscher Gesellschaft fur Systemautomation mbH
Rheinstral3e 78

D-65795 Hattersheim

Germany

Tel. +49 (0) 6190 / 9907 - 0
Fax. +49 (0) 6190 / 9907 - 50

Sales: +49 (0) 6190/ 9907 - 0
Hotline and Support: +49 (0) 6190 / 9907 - 99
Sales Email: sales@hilscher.com

Hotline and Support Email: hotline@hilscher.com

Web: http://www.hilscher.com

List of Revisions

Index | Date Version Chapter | Comment
1 11.08.00 | 1.000 all created
2 26.07.02 | 2.000 all rewritten

Although this program has been developed with great care and intensively tested, Hilscher
Gesellschaft fir Systemautomation mbH cannot guarantee the suitability of this program

for any purpose not confirmed by us in writing.

Guarantee claims shall be limited to the right to require rectification. Liability for any
damages which may have arisen from the use of this program or its documentation shall be
limited to cases of intent.

We reserve the right to modify our products and their specifications at any time in as far as
this contributes to technical progress. The version of the manual supplied with the

program applies.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Introduction 3

[1 INTRODUGCTION L.ttt tttttitee et et ettetettsasassasaaeeeessssssseesessesessssnnassaeesssssesssnnnsssseeessenesnnns 6|
[L.1 LLINTUX ... ettt e ettt e e e e e ettt e e e e e et et e e e e e e e e e e e e e e e e eanenes 6|

.2 THE DIIVEE VEISIONSeiiiiie e sttt e e e e e ettt e e ee e e e e ettt eeaaaeeassaannsteneeeeeeeeaaennneees 6|

1.3 Supported HIlSCNEr Cardsooooueiieiieiiiiieeieiieeeieee s 6|

L.4 DALA ETANSTE ...ttt e ettt et eeeesseeaaseseeeeseeassseannnseesneeeeeessssnnes 6|

.5 L R (e R AN Y T TV T e — 7|

R GETTING STARTEDcciiiiiiiiiiiiis ettt e e e e e e eeeeeeee s 8|
B8 COMMUNICATION. ..ttt ettt ettt e e e e e et eeeee s s e e eseeeeeebbnaaraeeeeas 9
B.1 ADOUL Tt USEI INTEITACEeeieeiiieieiiiieeeeeeeeeee ettt e e e e s e eeaeeeeeeeaeesseennneeees 9|

B.1.1 Message Interface and Process Data Image..........ccoccueiiiiiiiiieiiiieenee, 9|

B.1.2 The Protocol Dependent and Independent User Interface...................... 9|

B.2 INEIFACE STIUCTUME ... iuiiiiiteitiitieie sttt et st e ee et e s e sre et et e s e sseeseeeesresneaneeneens 10|

B.3 Message and Process Data ComMUNICALIONeuiieviiiiiiiiiiiie e 11

B.3.1 Message COMMUNICATIONc.vveeeeeeieeieeieeeeeeieieeeeeeeereeeeeeeeeeeeeane, 11]

[1/0 Communication With & ProCeSS IMage...........cc.uueeeeeieeeeeeeeeteeeeeeeeeeeeesenens 13|

Typical application: slave system, where the slave gets an interrupt with the next data
BXCNANGE CYCIC. ...ttt e e e e e e et e e e e e e eeeeeeeeeeeeeaneneneeeeeeeas 14|

Typical application: easiest handshake in master and slave systems with a guaranteed
consistence of the complete Process IMage.cvevivieieiiiieieseseseseae 16|

Typical application: master system with synchronous 1O devViCes.coeeeeeeeeeeerreenne... 17|

The Software Structure on the Communication BOards.............cc...eeeeeeeeeeeeecverieeneeeeeeeeennnnne 18|

B.3.3 The Real-Time Operating SYStemeuuiiieiiiiiiiiiiiiiieeeeee e 18|

B.3.4 THE ProtOCO! TASKcooiueeeiiiiiieeeee ettt e e e e e e eieeeeeeeeeas 19|

R N (=Y SN (e =l 1Y = S —— 20|
8.1 (TN = 2= DT 20|

n.2 PACKAGE CONMENTS ...ttt et ettt e e e e e e neeennneeeeeeeeeennnennnnnneeeeeeeens 22|

4.3 INSEANALION OF TNE AIIVET ...t e e e e e e e eeeeeeeeeeeeas 22|

4.4 Device Driver startup/ShUtdOWNuuuuiiie e e eeeeeeeeibeeeeeeaeeeens 22|

4.4.1 [SA BOAIUS ...ttt ana 23|

5 PROGRAMMING INSTRUCTIONSiiiiiiiiiiitiiiai e iieiiiiiiiinasssaesseeeessnennnaasaaaseeeeenes 24|
5.1 Include the Interface APl in YOUr APPIHCAtION.ccuuueeieeeeeeeeeeeeeeeeeeeeaeaaann 24|

5.2 Open and CloSE the AIVET...........cc.uuuuiiiieeeeeeceeee e 24|

5.3 Writing @n APPIHCALION.eivieeieieieiisieeieeeieese ettt 25|

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Introduction 4

5.3.1 Determine Device INFOrMAatioNoceeuueeeeieeeeeeeeeeeeeeeeeeeseeeeenn 25|

5.3.2 Message Based APPlICALIONcceeevuuurrerreeeeeieiiiiiiiiiieeeeeeseeennennes 26|

5.3.3 Process Data Image Based Applicationc.cccoeeevieviesesveiannane., 30/

5.4 THE DEMO ADPPICALION ...t e et e e eeeeee et e e e e e e e neeennneeeeeeeesennennn 32|
5.4.1 CEXAMPIE ..ottt e e ettt e e e e eessaeannneeeeeeeeaaaas 33|

6 THE APPLICATION PROGRAMMING INTERFACE......ccooiiieieiieeeeeeeeeeeeeeeeen 35
6.1 AP FUNCHONS OVEIVIEWuvviiiiiieeeeeeeeeeiiiiieeeeeeeaeaaeeitaeeeeaeeeeasaeensssseseeeeeaaesannes 35|
6.2 DEVOPENDIIVET() oottt e et e e eeeeeeeeeeeenaeeenneeeeeeeeanannnnnnneeeeeeeeeeenns 36|
6.3 DS i (T 37|
6.4 DEVGEIBOAIAINTO() ..ottt e e e e e e e e e e e e e e e e eeaeeas 38|
6.5 DEVGEIBOAIAINTOEX() ...vvvvviiiieeeeeeeiiiiiiiieeeeeeeeeeiite e e e eeeeeeeitb e e e eeeeeeeennrareeeeeeeens 39|
6.6 DEVINIEBOAIT() ...ttt e e e e e e ettt e e e e essseaesseeesseeeeessssnnsnnensseeeeeeas 40|
6.7 (DY == Loz e [N — 41|
6.8 DeVPUITASKPAIAMELEI() ... euviiveeeieeieeieeiieeeieeeete ettt 42|
6.9 DEVGEITASKPAIAMEIET()eeeeeeeeeeee ettt e e et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeseens 43|
6.10 DY R Tt 0 N TT T TP T T T T T T T ——— 44|
B.11 DEVSEIHOSISIALE() .veveveeieeeiieieieiiieiiieieeieiieieiieieieeeeee e 45|
6.12 DEVTHIIEIWALCNTOT() ...ttt et e e eeeeeeeeeeeaaeeeeeeeeeeeenneannnnes 46|
6.13 MeSSAGE TIANSTET FUNCHONS ...ttt e e e e e e e e eeeeeeeeeeaeeas 47|
65.13.1 e S S 47|

6.13.2 DEVPUIMESSA0E()...c.veviieeiieeieieieieieieieeee et 48|

65.13.3 DEVGEIMESSATE() ettt e e e e e e e eeeeeeeeeeeeeeeaeeennns 50|

6.14 DEVGEITASKSIALE()....vveeeeeeeeee ettt et eeeeseeeaeeeeeeeeseeeessseassseeesseeeeessssnsnseseseeeeeeas 52|
6.15 (DY T= a1 Y0 YT — 53|
6.16 Process Data Transfer FUNCHONSouiiiiiiiiiiiiiiiiieeeee e 56/
65.16.1 DEVEXCNANGEIO()......uuuveiiiieeeeeeeieee ettt e e e e e e eeeeeeraeeesseansseeeeeeeas 57|

6.16.2 DEVEXChANGEIOEIT() ...eeieiiiieiiiieiiieesiiieesiiieesiieesieeesneeesneeeesneneesneeeannes 58|

6.16.3 DEVEXCNANGEIOEX(). .. .vvviveeeeeeeiiiiiie et eeeea e e e e e e eeeeeeeeas 60|

6.16.4 DEVREAASENADAIA) ...ttt e eeeeeeeeeeeeeannnneeeeeas 61|

6.16.5 DeVREAAWItEDPMDALA()ccueeeeeiiieeeieeeeeiiiieeeeeeeieeeeieeeeeseenneeeeeeeas 62|

6.16.6 DEVDOWNIOAA(). et eeieeeiiieeeiiieesiiieesiiaesiieeasneeeassseeasnneeesnneeesneeesnneeenns 63|

7 ERROR NUMBERS......ooooooooooooooosooooosoooooooeooeeooeoeseseeeeseesesenoeoeeeeeeeoereens 64]
7.1 LISt OF EITOT NUMIDEIS ...ttt e ettt e e e e e e e eeeeeeeeeeaeeeeens 64|
r.2 HINS t0 EITOr NUMDEIS.......coiiiiiiiiiieieeee ettt e e e e e e s eeaaeeeeeeeeeeeeas 66|

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Introduction S)
B DEVELOPMENT ENVIRONMEN T S . . ittt ettt a e e e e eaea e eaeen 68|
|9 ({01 2 1 241 €1 = I I PR 69|

Copyright * Hilscher Gesellschaft fir Systemautomation * Dd:Linux#2EN

Introduction 6

1 Introduction

This manual describes driver package, load/unload topics, supported hardware and
copyright issue. The application programming interface (API) to our communication
boards is also explained in detail.

1.1 Linux

Linux is a free operating system developed under the [GNU General Public License |
the source code for Linux is freely available to everyone.

Linux is a cost-effective, reliable and secure operating system. It is constantly being
updated and refined with the latest technologies. Linux gains greater acceptance
throughout the computing industry. Our company supports the use of Linux in the field
of industrial communication. This driver supports all Hilscher cards with Dual Port
Memory Interface.

Where to get Linux? Please, visit home page. There you can find any
Linux related information and useful links.

1.2 The Driver Versions

Linux CIF Device Driver V2.000 was developed and tested with Linux Kernel version
2.4.0,2.4.2.

The driver version 1.003 works under Kernel 2.2.10, 2.2.14, 2.2.16

1.3 Supported Hilscher Cards

Linux CIF Device Driver supports Hilscher CIF-50 PCl and CIF-30/CIF-104 ISA
cards. These are Profibus, Interbus, DeviceNet and CANopen cards.

1.4 Data transfer

On the communication boards, we distinguish between two types of data transfer.

» The first one is the message oriented data transfer used by message oriented
protocols.

« The second one is the data exchange with process images from 1/O based
protocols.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

http://www.gnu.org/licenses/licenses.html
http://www.linux.org/

1.5 Terms for this Manual

DPM Dual-Port Memory is the physical interface to all communication board (DPM
is also used for PROFIBUS-DP Master).
CIF Communication InterFace

COM COmmunication Module
HOST Application on the PC or a similar device
DEVICE Synonym for communication interfaces or communication modules

RCS Realtime Communicating System, this is the name of the
operating system that runs on the communication boards

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Getting Started

2

Getting Started

Overview

Chapter Communication includes general definitions and describes the
fundamentals about data transfers between an application and the communication
boards.

Chapter The Device Driver describes an overview, the installation and configuration
of the device

The important chapter Programming Instructions describes the basic functionality
of using the device driver and presents an example.

All functions of the device driver are explained in chapter The Application
Programming Interface.

Chapter Error Numbers lists a detail description of the error numbers

Chapter Development Environments informs about used development tools.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Communication 9

3 Communication
3.1 About the User Interface

3.1.1 Message Interface and Process Data Image

There are two ways of data transfer between the HOST and the DEVICE:
» Message oriented data transfer

For telegram oriented protocols like PROFIBUS-FMS the data transfer happens
with messages, which will be send or received over two mailboxes in the dual-port
memory. There is one mailbox for each direction (Send direction and receive
direction). Normally, the data transfer will be controlled by events.

* Process data image transfer

In fieldbus systems, which handle input and output data, like PROFIBUS-DP or
InterBus-S, there is a data image of the process data inside the dual-port memory.
Input data and output data have their own area and the data transfer normally
happens cyclic.

3.1.2 The Protocol Dependent and Independent User Interface

The user interface via the dual-port memory of the communication interface and the
communication module has two parts, a protocol dependent, and a protocol
independent part.

The protocol independent part of the dual-port memory is the main part of the data
between HOST and DEVICE.

The particular protocol dependent part are the parameters for initializing the protocol
and the message structure for exchanging jobs between the HOST and the DEVICE.
These jobs are called messages. The structure of a message has reached a high
standard. This means that changing to another protocol is very simple.

The exactly composition of a message is described in the paticular protocol manual.
The difference between the various protocols are only the protocol parameters. The
data model of the dual-port memory and the mechanism of message exchange are
always the same.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Communication

10

3.2

The

Interface Structure

following picture shows the various parts of the dual-port memory.

interface to the communication board based on a dual-port memory. The

User side

dula-port memory

process image
output data

process image

input data

send mailbox

receive mailbox

protocol parameter

protocol status

system status

CIF/COM side

>

)

Memory applicable
to fieldbus systems
with 1/0 devices as
opposed to a

messaging system

highest 1 Kbyte
always
present

One dual-port memory map for all CIFs/COMs and all protocols with

Process image for input and output data

Two mailboxes for message communication

Parameter area for simple protocols (baudrate, data bits, parity ...)

Protocol status information (telegram counter, last error, valid slaves...)

System status (firmware name/version, CIF revision/serial number...)

Copyright * Hilscher Gesellschaft fir Systemautomation * Dd:Linux#2EN

Communication 11

3.3 Message and Process Data Communication

3.3.1 Message Communication

A message is a unique data structure in which the user transmits or receives
commands and data from the CIF or COM.

A message consists of an 8 byte message header, an 8 byte telegram header and up
to 247 bytes of user data.

Message Header Used from operating system for transportation of the
message. It is defined in this manual and constant for the
application.

Telegram Header Defines the action for the protocol task.

User data Send/received data.

Parameter Type Meaning

Msg.Rx byte Number of Receiving Task Message Header

Msg.Tx byte Number of Sending Task

Msg.Ln byte Data length

Msg.Nr byte Number of Message for Identification

Msg.A byte Number of Responses

Msg.F byte Error Code

Msg.B byte Number of Command

Msg.E byte Completion

Msg.DeviceAdr | byte Communication Reference Telegram Header
Msg.DataArea | byte Data Block

Msg.DataAdr word Object Index

Msg.Dataldx byte Object Subindex

Msg.DataCnt byte Data Quantity

Msg.DataType | byte Data Type

Msg.Fnc byte Service

Msg.D[0-246] byte User Data Telegram User Data

General structure of a message

The meaning of the telegram header is an example for PROFIBUS-FMS. For other
protocols the structure is the same but, the parameters change as for example with
Modbus Plus, from communication reference to slave address, object index to register
address or service to function code.

The driver transfers a message independant from the protocol and works transparent.
The message reproduces the telegram.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Communication 12

3.3.1.1 Sending (Putting) and Receiving (Getting) Messages

User App. Drv internal buffer Dev. Internal Buffer Fieldbus The user creates the send

message and calls
DevPut Message()

command.

E— Send

message

Device Driver copies Msg
into internal Msg-Buffer
and starts DMA.

The device takes out the
message, puts it in an
internal queue and signals
this action to the HOST.

—> nd

message

004

il

The queue is handled by
the FIFO principle. If the
message is on the first
position, it will be
decoded to generate the
send telegram.

If the device receives the
acknowledge telegram, it
generates a receive

Receive message and puts it in the
message 44— quee.

L]

If the message is in the
first position and the
receive mailbox is empty,
the message will be
copied in driver internal
buffer and the mailbox set
valid.

Receive
message

The user takes out the
receive message, with the
DevGet Message()
command, which sets the
mailbox state to empty.

Receive
message

g

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Communication 13

3.3.2 1/0 Communication with a Process Image

In fieldbus systems with 10 devices like PROFIBUS-DP or InterBus-S there is a
process image of the 10 data available directly in the dual-port memory. The access is
the same if the CIF or COM works as master or slave. Depending on the application
the user can choose between several handshake modes, or if only byte consistence is
required, the user can read and write without any synchronization.

3.3.2.1 Direct Data Transfer, DEVICE Controlled

User app. Dual-port memory Fieldbus
The CIF starts by itself a data
> exchange cycle if it is a
master, or it receives a data
exchange cycle if it is a slave
Input
data R
Now the user can read new
input data and write the
output data in the dual-port
—_ Output memory. This is done by the
data DevExchangelO() function. .
4— Input
data

The CIF/COM starts the next
data exchange cycle.

Output >
data

Typical application: slave system, which must guarantee that the data from every
master cycle must be given to the user program.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Communication

14

3.3.2.2 Buffered Data Transfer, DEVICE Controlled

CIF/COM makes cyclic data
exchanges on the bus.

After each data exchange the
CIF/COM checks, if the DPM
is available.

The user can read out the
input data and write the new
output data. This is done by
the DevEexchangelO()
function.

If there was one data
exchange on the bus in the
meantime, the CIF/COM
exchanges the data between
the internal buffer and the
dual-port memory.

User app. Dual-port memory internal buffer Fieldbus
44—
Input
data ‘—>
— > Output 4—P)
data
Input
<4+— data 4P
Output
> data
Input
data 4+—
<4+—Pp
4P

ts an interrupt with the

next data exchange cycle.

Copyright * Hilscher Gesellschaft fir Systemautomation * Dd:Linux#2EN

Communication

15

3.3.2.3 Uncontrolled Direct Data Transfer

user app. Dual-port memory Fieldbus
Output
4—p | data « >
lInput
<4—)p | data < >

The user reads and writes
the process image, with
the DevEexchangelO()
function, at the same time
like the CIF/COM.

The CIF/COM does cyclic
data exchanges and after
every exchange it makes
an update of the process
image.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Communication 16
3.3.2.4 Buffered Data Transfer, HOST Controlled
User app. Dual-port memory internal buffer Fieldbus
Cyclic data exchange
between internal buffer and
4—P) fieldbus.
4P
The user reads last input data
—_— Output 4+——p and writes new output data
data with the DevEexchangelO()
function. Data exchange
continues.
Input
<4+— data 4P
Output CIF stops data exchange,
—Pp | data puts the output data in the
internal buffer and the latest
input data in the dual-port
Input memory.
data 4+—
User reads input data and
writes output data
(DevExchangelO()).
Output
— > data < >
Input
4+— data 4P

Typical application:

easiest handshake in master and slave systems with a
guaranteed consistence of the complete process image.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Communication 17

3.3.2.5 Direct Data Transfer, HOST Controlled

User app. Dual-port memory internal buffer Fieldbus
No data exchange.
The user writes new output
— > Output data with the _
data DevEexchangelO() function.
CIF starts one data exchange
with the output data in the
Output DPM and writes the new input
data > data in the dual-port memory.
Input
data «
User reads new input data
with the next
DevExchangelO().
Input
+— data

Typical application: master system with synchronous 10 devices.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Communication 18

The Software Structure on the Communication Boards

The software is based on an extremely modular architecture. The protocol itself is a
self-contained module which has no variables in common with any other software
module apart from the operating system. It is therefore possible to implement the
protocol with the same software module on all our boards, thus ensuring the greatest
software quality.

The main parts of the firmware are the real-time operating system and the protocol
task(s).

3.3.3 The Real-Time Operating System

The operating system can manage 7 tasks, and is optimized for real-time
communications services. It provides the following functions:

« Distribution of computing time among the individual-tasks.
e Task communication.

* Memory management.

* Provision of time functions.

» Diagnostic and general management functions.

e Transmit and receive functions.

The computing time is evenly distributed by the operating system among all tasks
ready to run. A task switch, i.e. switch over to the next task, takes place in cycles every
millisecond.

If a task has to wait for an external event, e.g. for the receipt of data, it is no longer
ready to run and a task switch is performed immediately.

The available computing time and the maximum possible sum baud rate make sure,
that a less prior task is not completely blocked by a high priority task. Presumably the
data through put is lower in this case.

Communication between the tasks takes place by messages. These are the areas of
memory made available by the operating system into which the tasks write data.
Transport of messages from one task to another and notification to a task that a
message is there is handled by the operating system.

The operating system also manages the memory area for storage of the tasks and
their stack. Individual tasks can be deleted or reloaded.

A task can wait for an event and the operating system will restart the task when the
event has occurred, the time resolution is 1 millisecond.

The operating system can stop or start individual tasks and pass on certain jobs to
them. The tasks thus make available data in the trace buffer which is managed by the
operating system.

The operating system communicates with the HOST (PC or a similar device) via the
dual-port memory interface. There is access to the individual-operating system
functions and to the individual tasks via the communications system.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Communication 19

3.3.4 The Protocol Task

The protocol task is responsible for transmission of the data in accordance with the
protocol. The parameters it requires for this are taken from the dual-port memory or
from the FLASH-memory.

A transmit job is always initiated with a message. This contains all the data to be
transmitted. These are provided with any control characters and checksums required
and then output by interrupt or DMA. At the same time, the corresponding monitoring
periods are started. When the data has been transfered or an error has occurred, a
corresponding acknowledgment is returned to the sender of the message.

Depending on the protocol, receive messages are restored after the transmission.
Receiving is done by interrupt or DMA. If a message has been received without error, it
is passed on by message to the PC via the dual-port memory interface.

I/O oriented protocol tasks work on the bus independently according to the given
protocol specification. The data transfer is not done by a message, but is done by
direct reading or writing to the send and receive data in the dual-port memory.

As the protocol task runs independently, a wide variety of protocols can be
implemented on the CIF, PC/104 or COM by replacing this task. Different tasks can
also be used for the two serial interfaces.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Device Driver 20

4 The Device Driver

4.1 General

Linux CIF Device Driver was implemented as kernel mode driver and offers the best
performance for Hilscher cards on the Linux operating system.

The Driver implements very fast interrupt handler that guarantees optimal utilization of
our hardware. It can operate in polling mode too. If there is no mandatory reason to
use polling mode, use always interrupt mode. By hardware events interrupts are
providing best response time on the event.

[User Application J

!

CIF Device Driver Interface

(cif_api.o)

application

operating system

Linux Operating System

CIF Device Driver (cif.0)

Boa¥d 1 Boar(YZ Boam 3 Board 4

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Device Driver 21

Function Overview:
* handles one to four communication boards at once
» Interrupt and polling mode useable for each board (except PCMCIA)

All boards can be run in interrupt or polling mode. If interrupt mode is configured for a
board the device driver will install an interrupt service function for this board. The driver
will install an own interrupt service function for each interrupt driven board. So the
boards can be handled independently.

The difference between interrupt and poll mode is only the handling of application
request during timeout situations. If an application has to wait for a function (e.g.
DevReset ()) so in interrupt mode the application will be blocked in the driver and the
CPU is free to do other work. After the given timeout or at the end of the command,
the application is released and does normal executing.

In poll mode the driver will run a "while loop”, waiting until the function has finished or
the given timeout is reached. The user can also use the functions without timeout
(timeout=0) and run the polling by itself.

It is possible to use independent processes for send message (DevPut Message()),
receive message (DevGet Message()) and I/O data transfers (DevExchangel ()).
Each process will be blocked in the driver when necessary without blocking the other
ones. If threads are used and a function has to wait for a certain operation (timeout
paramter unequal 0), the driver blocking mechanism will block each thread which is
accesseing the driver. This is by design, because all threads in a process are sharing
the same driver handle (hidden in the driver API).

A solution is to use timeout=0 in the driver functions and to check the return values if
the function is processed without an error. For the message transfer functions
(DevPut Message() and DevGet Message()), DevGet MBXSt at e() can be used to
check if the function can be e executed. immediatley.

On each board only one receive (DevGetMessage()), one send
(DevPut Message()) and one 10-Exchange (DevExchangel ()) command can be
active at the same time, because there is no command queuing in the driver
implemented. So if one command for the specific function is active, all further
commands to the same function will be returned with an error. All other driver functions
are reentrant and can be called at every time.

Notice Switching between pooling mode and interrupt mode is supported by
the driver setup program (DrvSu)

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Device Driver 22

4.2 Package Contents

Installation Directory | Subdirectory | Description
.. .[cif-vV2.000 Src Driver file, driver source files, script files for driver load/unload
inc Driver header files
usr-inc Header files for APl prototypes, protocol dependant header
api cif_api.o, API prototypes
test Driver test program with source code
console Demo console program
man Driver manual
AUTO Autoloading information

Device Driver files:
cif.o CIF Device Driver file

cif_load, cif_unload scripts for loading and unloading of the driver

APl files:
cif_api.o Object file of the driver interface
cif _user.h Definition header file for the user interface

Test program:

DrvSu An application for testing and debugging

4.3 Installation of the driver

To install this package on your computer simply extract .tgz file in your installation
directory:

tar xzfv cifv2000.tgz

4.4 Device Driver startup/shutdown

To load and unload a driver - cif.o (located in 'src/' subdirectory of the installation
directory) please use 'cif_load" and 'cif_unload' scripts. PCI cards are autodetected by
the driver. If you use ISA cards, you have to pass load parameters to the driver.

In order to load/unload the driver at the system start/shutdown you must modify some
system scripts. Please consult files located in the ‘AUTO’ subdirectory of the
installation directory.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Device Driver 23

4.4.1 ISA Boards

For the ISA boards you have to specify following parameters: DPM-address, DPM-size
and IRQ-number. you can have plugged up to four Hilscher communication Boards at
a time, so you can pass up to four DPM-addresses, DPM-sizes and IRQ-numbers. The
best way to describe this is by showing a few samples of the command line.

./cif_| oad dpm add=0xCA0O00 dpm | en=0x2 irqg=11

if there is only one ISA board plugged with appropriate jumper settings.

If you want the board to operate in polling mode simply pass IRQ-number 0O:
./cif_|l oad dpm add=0xCA000 dpm | en=0x2 irqg=0
./cif_load dpm add=0xCA000, 0xCB0O0O, 0xCCO00, 0x CDOOO

dpm | en=0x2, 0x8, 0x6, 0x8
irq=11,9, 12, 14

if there are four ISA boards plugged with appropriate jumper settings

Note: On Intel platforms, DPM-addresses for ISA boards are in range 640KB-1MB
(OxA0000 to OxXFFFFF). Do not forget to tag IRQ-number, you are going to use for ISA
card, in BIOS as an ISA IRQ.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 24

5 Programming Instructions

5.1 Include the Interface APl in Your Application

For the user API there is only one include file cif_user.h which contains all the
necessary information like structure, constant and prototype definitions. A complete
function description is given in the chapter 'The Programming Interface'. Link the
device API object (cif_api.o) according to your program.

For the support of the various protocols, each protocol has its own header file where all
the protocol dependent definition are included (e.g. dpm_user.h for the PROFIBUS-DP
Master protocol). Furthermore, there exists an include file rcs_usr.h for the definitions
of the operating system of the communication boards.

5.2 Open and Close the driver

Only three functions are needed to get a DEVICE to work:
Open a Driver
e Open the driver
DevOpenDriver(), checks if a driver is installed
* Initialize your communication board
DevinitBoard(), check if a specific board is available
* Set the application ready state
DevSetHostState(HOST_READY), signals the board an application

After these functions your application is able to start with the communication.

Close a Driver
* Clear the application ready state

DevSetHostState(HOST_NOT_READY), signals the board, no application
running

* Close the board link
DevExitBoard(), unlink from a board
» Close the device driver
DevCloseDriver(), close a link to the device driver

After calling these functions all resources for the communication API are freed.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 25

5.3 Writing an Application

5.3.1 Determine Device Information

The interface API includes information functions, which gives an application the
possibility to determine the installed DEVICEs, the actual driver version and the
firmware name and version installed on the device.We suggest to read out these
informations and make them accessible to the user. This information can be used by
support inquiries to our hotline.

Important information:
* Driver version
* DEVICE type, model and serial number

* Firmware name and version

Read informations about installed devices:

After opening the driver with DevOpenDri ver (), the function DevGet Boar dl nf o()
can be used to read the driver version and the installed devices.

voi d Denp (void)

{
short sRet ;
BOARD_| NFO t Boar dI nf o;

if ((sRet = DevOpenDriver()) == DRV_NO ERROR) {
/1 Driver successfully opend, read board infornation
if ((sRet = DevGetBoardlnfo(&t Boardlnfo) != DRV_NO ERROR) {
/1 Function error
printf("DevGetBoardl nfo Ret Wert = 9%d \n", sRet);
} else {
/1 Information successfully read, save for further use
/1 Check out which boards are avail abl e
for (usldx = 0; usldx < MAX_DEV_BOARDS; usldx++){
if (tBoardlnfo.tBoard[usldx].usAvail able == TRUE) {
/! Board is configured, try to init the board
sRet = DevlnitBoard(tBoardl nfo.tBoard[usldx].usBoardNunber);

if (sRet !'= DRV_NO ERROR) {

/1 Function error

printf("DevlnitBoard RetWert = %d \n", sRet);
} else {

/! DEVICE is available and ready............

Please refer to the function DevGet Boar dI nf o() for a description of the
BOARD_INFO structure.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 26

Read informations about a specific DEVICE:

After opening a specific DEVICE with Devl ni t Board() a lot of informations about a
DEVICE can be read by the function DevGet | nf o() .

voi d Denp (void)

{
short sRet ;
BQOARD_I NFO t Boar dl nf o;
FI RMMRE_| NFO t Fi r nwar el nf o;
VERSI ON_I NFO t Ver si onl nf o;
DEVI NFO t Devi cel nf o;
if ((sRet = DevOpenDriver()) == DRV_NO ERROR) {
/1 Driver successfully opend, read board information
if ((sRet =DevGCetBoardlnfo(&t Boardlnfo) != DRV_NO ERROR) {
/! Function error
printf("DevGetBoardl nfo Ret Wert = 9%d \n", sRet);
} else {
/1 Information successfully read, open all existing boards
for (usldx = 0; usldx < MAX_DEV_BOARDS; usl dx++){
if (tBoardlnfo.tBoard[usldx].usAvailable == TRUE) {
/1 Board is configured, try to init the board
sRet = Devl ni t Board(tBoardl nfo.tBoard[usldx].usBoardNunber);
if (sRet !'= DRV_NO ERROR) {
/! Function error
printf("DevlnitBoard Ret Wert = 9%d \n", sRet);
} else {
/! DEVICE is available and ready............
/1 Read DEVI CE specific information (VERSI ON_|I NFO
sRet = DevGet | nfo(tBoardl nfo.tBoard[usldx].usBoardNunber,
GET_VERSI ON_| NFQ,
si zeof (t Versi onl nfo),
t Ver si onl nfo);
/! Read DEVI CE specific information (DEVI CE_I NFO
sRet = DevGet | nfo(tBoardl nfo.tBoard[usldx].usBoardNunber,
GET_DEV_I NFQ,
si zeof (t Devi cel nfo),
t Devi cel nfo);
/1 Read DEVICE specific information (FI RMAMARE | NFO
sRet = DevGet | nfo(tBoardl nfo.tBoard[usldx].usBoardNunber,
GET_FI RMAARE_| NFO,
si zeof (t Fi rmnar el nf o),
t Fi rmnar el nf o) ;
}
}
} /* end for */
}
}
}

Please refer to the DevGet I nf o() function for a description of the different information
structures.

5.3.2 Message Based Application

On message based application you have to be aware that a DEVICE can onlyqueue a
fix number of messages (normally 20 to 128). Message queuing will be done in send
and receive direction. This means, the HOST and the connected protocol will share all

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 27

available messages. Each request or response from both sides will occupy a message
until it is transfered to the other side.If the amount of messages exceeds the given
limit, no matter if the HOST or the protocol uses all the messages, the DEVICE is not
longer able to create a response for a send or receive request. This will happen until a
message is freed by transferring it to the HOST or sending it over by the protocol. This
will free a message, which can be used for another data transfer.

So an application should always be able to receive messages to prevent theDEVICE
for overrunning by the use of messages.

After opening the device interface and setting the application ready state, the
application must be able to process receive messages from the DEVICE.

Example 1:

/***

/* Mai nprogram

/***

include "../usr-inc/cif_user.h"
int main(void)
{
short sRet;
MSG_STRUC t Recei ceMessage;
MSG_STRUC t SendMessage;
/* _________________________________ */

/* Qpen the driver */
if ((sRet = DevOpenDriver()) != DRV_NO ERROR) {
printf("DevOpenDriver Ret Wert = 9%d \n", sRet);

/* _________________________________ */
/* Initialize board */
} elseif ((sRet = DevlinitBoard (0)) != DRV_NO ERROR) {

printf("DevlnitBoard Ret Wert = 9%d \n", sRet);

/* _________________________________ */
/* Signal board, application is running */
} else if ((sRet = DevSetHostState(O,
HOST_READY,
OL) !'= DRV_NO ERROR)) {
printf("DevSet Host State (HOST_READY) RetWert = %d \n", sRet);

} else {

while (...PROGRAM IS RUNNING ...) {

/1 Application work........
/1 Try to read a nessage
sRet = DevGet Message(O,
&t Recei veMessage,
100L); /1 Wait a maxi num of 100 ns

if (sRet == DRV_GET_TI MEQUT) {
/1 No nmessage avail abl e
/1l Try again..............
} elseif (sRet !'= DRV_NO ERROR) {
/1 This is a function error
/] Process error
} else {
/'l Message avail abl e
/! Process nmessage

}

/1l Try to send a nessage
/!l Create a nmessage |ike described in the protocol manual
sRet = DevPut Message(O,

& SendMessage,

100L); // Wait a maxi mum of 100 ns

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 28

if (sRet == DRV_PUT_TI MEQUT) {
/'l Message could not be send
/1 Mailbox full......
} elseif (sRet = DRV_NO ERROR)) {
/1 Error during send nmessage
/1 Process message error

}
} /* end while*/

/1 O ose the application
/* ________________________________ */
/* Signal board, application is not running */
if ((sRet = DevSetHostState(O,
HOST_NOT_READY,
OL)) != DRV_NO ERROR) {
printf("DevSetHost State RetWrt = 9%d \n", sRet);
}

/* ________________________________ */
/* Free board */
if ((sRet = DevExitBoard (0)) != DRV_NO ERROR) ({
printf("DevExitBoard RetWert = 9%d \n", sRet);
}

/* ________________________________ */
/* Cose driver */
if ((sRet = DevOd oseDriver()) != DRV_NO ERROR) {
printf("Devd oseDriver RetWrt = 9%d \n", sRet);
}

} /* end main*/

DevPutMessage() and DevGetMessage() uses a timeout value to force the driver to
wait for the completion of the function, until the given timeout period is passed. This
timeout should be used because the device needs also a period of time to get a
message or to write a message. This period is normally very short (400 us up to 4 ms)
but working in a while loop with timeout equal to zero and try to put a message in such a
loop will result in a bad system response.

The given timeout from 100 ms is the maximum time the function will wait for
completion. It will return immediately if the function is done.

The application is responsible for the reiteration of messages which could not be send to
the DEVICE.

How the device acts after power up or changes of the HOST ready state (e.g. shut down
the bus or stop data transmission) is normally configurable by the protocol configuration.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 29

Another way to check if messages can be send or received is the use of the
DevGetMBXState() function. This function is used to determine the actual state
(DEVICE_MBX_FULL/EMPTY, HOST_MBX_FULL/EMPTY) of the HOST and DEVICE
mailbox. This the preferred way for a polling application.

Example 2:

1A R EE AR EEE R

/* Mai nprogram

AR R EE AR EEEEEEEEEELEEE R

int main(void)

{
unsi gned short usDevState, usHost State;
short sRet;
MSG_STRUC t Recei ceMessage;
MSG_STRUC t SendMessage;
A see exanple 1

/1 HOST and DEVI CE nui |l box state
if ((sRet = DevGet MBXState(O,
&usDevi ceSt at e,
&usHost State)) != DEV_NO ERROR) {
printf("DevGet MBXState RetWert = 9%d \n", sRet);
} else {
if (usHostState == HOST_MBX_FULL) {
/!l Read device nmessage. nmessage is available
if ((sRet = DevCet Message(O,
&t Recei veMessage,

OL)) != DRV_NO ERROR) {
printf("DevGet Message RetWert = %%d \n", sRet);
} else {
/! Process nmessage
}

}
if (usDeviceState == DEVI CE_MBX_EMPTY) {
/1 Send mail box is enpty
if ((sRet = DevPut Message(O,
& SendMessage,
OL)) !'= DRV_NO ERROR) {
printf("DevPut Message RetWert = %%d \n", sRet);

[see exanple 1

In this example, the application must create its own polling cycle an is responsible for
freeing the processor for other applications.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 30

5.3.3 Process Data Image Based Application

Applications which working with process data images (IO protocols) are using the
DevExchangelO(), DevExchangelOErr() or DevExchangelOEXx() function for the data
transfer between the HOST and the DEVICE.

ATTENTION: By using DevExchangel () it is not possible for master devices
to recognize the fault of a specific bus device. Only global errors
like whole bus disruptions or communication breaks to all
configured device will be indicated by this function.To get
specific device fault, the application must read the "TaskState-
Field", where device specific datas are located.This must be
done after each call to DevExchangel () .

Example 1:

/***
. .

/ Mai npr ogr am
/***
include "../usr-inc/cif_user.h

int main(void)

short sRet;
unsi gned char abl CSendDat a[512] ;
unsi gned char abl ORecei veDat a[512] ;

L T T T T */ /* Open the
driver */
if ((sRet = DevOpenDriver()) != DRV_NO ERROR) {
printf("DevOpenDriver Ret Wrt = 9%d \n", sRet);
/* _________________________________ */

/* Initialize board */
} elseif ((sRet = DevlnitBoard (0)) != DRV_NO ERROR) {
printf("DevlnitBoard Ret Wrt = 9%d \n", sRet);

T */ /* Signal
board, application is running */
} else if ((sRet = DevSetHostState(O,
HOST_READY,
OL) !'= DRV_NO ERROR)) {
printf("DevSetHostState (HOST_READY) RetWert = %d \n", sRet);

} else {
while (...PROGRAM IS RUNNING ...) {

/1 Application work........

/1l Insert datas to the send data buffer

abl CSendDat a[0] = 11,
abl CSendDat a[1] = 22;
abl CSendDat a[2] = 33;

if ((sRet = DevExchangel O(O,
0,
si zeof (abl CSendDat a) ,
&abl OsendDat a[0] ,
0,
si zeof (abl ORecei veDat a) ,
&abl ORecei veDat a[0] ,
100L)) !'= DRV_NO ERROR) {

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 31

/1 Error during data exchange
printf("DevExchangel O RetWert = %d \n", sRet);
} else {
/1 Input data are stored in the abl ORecei veData
/1 Check for specific device errors (VERY | MPORTEND)
if ((sRet = DevGet TaskState(.......)) !'= DRV_NO ERROR) {
/1 Error by reading task state information

} else {
/1 Check if one of the bus devices are faulty

// Process input data...........

}
}
} /* end while*/

/1 O ose the application
/* ________________________________ */ /*
Si gnal board, application is not running */
if ((sRet = DevSetHost State(0,
HOST_NOT_READY,
OL)) !'= DRV_NO ERROR) {
printf("DevSet Host State Ret Wert = 9%d \n", sRet);
}

/* ________________________________ */
/* Free board */
if ((sRet = DevExitBoard (0)) != DRV_NO ERROR) {

printf("DevExitBoard Ret Wert = 9%d \n", sRet);
}
L e R R T */ /* O ose
driver */
if ((sRet = DevC oseDriver()) != DRV_.NO ERROR) {
printf("Devd oseDriver Ret Wert = 9%d \n", sRet);

}

} /* end nmain*/

This example creates a send and a receive buffer. During the data exchange function
call the data from the send buffer (ablOSendBuffer) are written to the DEVICE output
process data area and the data from the input process data area are read to the
receive buffer (ablOReceiveBuffer). As data buffers, there are fixed data area from
512 bytes for input and 512 bytes for output data used. The real size of the process
image can be determine by the DevGetinfo(GET_DEV_INFO) function. This function
returns the DPM size of the DEVICE as a multiple of 1024 Bytes (e.g. 2).

process i mage size = ((bDpntize * 1024) -1024) /2

From the whole size (2 * 1024 Byte) there must be subtract 1024 Byte, which is the
length of the last Kbytes (always reserved for message transfer and protocol
independent data). This gives a value of 1024 Bytes, which must be divided by two
(the size of the input and output process image is always equal.The synchronization
mode for the exchange function (e.g. uncontrolled and so on) will be recognized by the
DevExchangel () function and handled in the right manner.

Read out state information for all connected bus devices when using a master device,
to find out if on of the bus devices has a malfunction. This is done by the use of
DevCet TaskState(). The function must be called after each call to
DevExchangel () to discover problems with particular devices (see also
DevExchangel CErr ()).

The evaluation of the process data is up to the application. The exchange function only
copys a data area (one byte up to the whole data area) from and to the device. Where
the data for a particular device is located in the 10 process image is defined by the
system configuration.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 32

It is also possible to read only one byte from the image. But be aware, depending on
the sychronization mode (HOST Controlled, Buffered Data Transfer) , each data
exchange by the HOST will result in a complete buffer exchange on the DEVICE. To
prevent needless data transfers of unchanged data between the DPM and the internal
data buffer of the DEVICE, we suggest to transfer as much data as possible with one
DevExchangel () call to get the best system performence.The DevExchangelO()
function can be used to send and receive process data in one call or in two calls.
Where one call writes output data and the other on reads input data. To prevent one of
the functions, set the corresponding size parameter equal to zero.

5.4 The Demo Application

We have created demo applications which show the use of the driver.

* If you want to test our driver not in X-Windows Environment, there is a simple
console demo program incuded in this package.

* For X-Windows system there is CIF Driver Setup and Test Program ‘drvSu’ in the
package. All of the driver functions are utilized in this application including functions
for the message transfer and for reading/writing process images.

The source code for this application is included, so it can help you understand how
to integrate the driver into your application.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions 33

5.4.1 C-Example

The sample code demonstrates the initialization and the data transfer for a message
and for process image exchange. This source code is available from the driver disk.

include "../usr-inc/cif_user.h"

1A R R AR EE R

/* Mai nprogram

AR R E R R EE R EEEEEEREREEEEEEEEEEEEEEEEEEEEEEEEE SRR EEEEE LY

int main(void)

{
unsi gned short usDevSt at e, usHost St at e;
short sRet;
M5G_STRUC t Message;

unsi gned char t | OSendDat a[512] ;
unsi gned char t 1 ORecvDat a[512] ;

* - */
/* Open the driver */
if ((sRet = DevOpenDriver()) != DRV_NO ERROR) {

printf("DevOpenDriver Ret Wert = 9%d \n", sRet);
/* e e e m e o oo oo e e e e e e e e e */
/* Initialize board */
} elseif ((sRet = DevlnitBoard (0)) != DRV_NO ERROR) {

printf("DevlnitBoard Ret Wrt = 9%d \n", sRet);
/* e e e m e o oo oo e e e e e e e e e */
/* Signal board, application is running */
} else if ((sRet = DevSetHostState(O, /* Devi ceNunber */

HOST_READY, /* Mbde */
OL) !'= DRV_NO ERROR)) {
printf("DevSetHostState (HOST_READY) RetWert = %d \n", sRet);

} else {

/*
/* Test Message transfer
/*
/* Build a message */

t Message. rx = 0x01;
t Message. t x = 0x10;
t Message. I n = 12;
t Message. nr = 1;
t Message. a = 0;
t Message. f = 0;
t Message. b = 17;
t Message. e = 0x00;
t Message. dat en[0] = 1;
t Message. dat en[1] = 2;
t Message. dat en[2] = 3;
t Message. dat en[3] = 4;

/* Send a message */
sRet = DevPut Message (O,
(MSG_STRUC *) &t Message,
5000L);
printf(" DevPut Message RetWert = 9%d \n", sRet);

/* Receive a message */

sRet = DevGet Message (O,
si zeof (t Message) ,
(MSG_STRUC *) &t Message,
20000L);

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Programming Instructions

printf(" DevGet Message RetWrt = 9%d \n", sRet);
/*

/* Test for Exchangel O

/*

/* Wite test data to Send buffer */

t 1 CSendDat a. abSendDat a[0] = O;

t | OSendDat a. abSendDat a[1] = 1;

t | OSendDat a. abSendDat a[2] = 2;

t 1 CSendDat a. abSendDat a[3] = 3;

* -

/* Run Exchangel O */

sRet = DevExchangel O (O,
0, /* usSendOf f set */
4, /* usSendSi ze */
&t | CsendDat a, /* *pvSendDat a */
0, /* usReceiveOf fset */
4, /* usRecei veSi ze */
&t | ORecvDat a, /* *pvRecei veData */
100L); /* ul Ti meout */

printf("DevExchangel O RetWert = %d \n", sRet);

}

/* Signal board, application is not running
if ((sRet = DevSetHostState(O,
HOST_NOT_READY,
OL) !'= DRV_NO ERROR)) {
printf("DevSetHost State (HOST_NOT_READY) Ret\Wert = 9%%d \n", sRet);

/* C ose communi cation */
sRet = DevExitBoard(0);
printf("DevExitBoard RetWert = 9%d \n", sRet);

/* Cose Driver */

sRet = DevC oseDriver();

printf("Devd oseDriver RetWert = 9%d \n", sRet);
return O;

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

35

6 The Application Programming Interface

All definitions for data structures, function prototypes and definitions are located in the
user interface header file ci f _user. h.

Note: Please notice, that the timer resolution on Linux system is 10ms. The
use of timeout values lower than the given timer resolution will result
in timeout periods between 0 the timer resolution.

6.1 APl Functions Overview

Function Group Function Description

Installation DevOpenDiriver() Links an application to the device driver

DevCloseDriver()

Closes a link to the driver

DevinitBoard()

Links an application to a board

DevExitBoard() Closes a link to a board

Device Control DevReset() Resets a board
DevSetHostState() Sets{CIears the information bit for HOST is

running

DevTriggerWatchDog() Serves watchdog function of the board

Message Data Transfer | DevPutMessage() Transfer a message to the board
DevGetMessage() Read a message from a board
DevGetMBXState() Read actual mailbox state
DevGetMBXData() Read actual mailbox data

10 Data Transfer

DevExchandelO()

Put/Get |0 data to/from a board

DevExchandelOEXx()

Put/Get IO data to/from a COM module

DevExchandelOErr()

Put/Get IO data to/from a board including state
information

DevReadSendData()

Read/Send Rcv/Snd area of the DPM

Protocol,
Information,

Configuration

DevPutTaskParameter()

Writes the parameter for a communication task

DevGetTaskParameter()

Reads the parameter from a communication task

DevGetTaskState()

Read all task states from a board

Device Information

DevGetBoardinfo()

Read global board information

DevGetBoardInfoEX()

Read board extended information

DevGetlnfo()

Read various information from a board

Other

DevReadWriteDPMData()

Read/Write the DPM directly

System function

DevDownload()

Firmware/Configuration download

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

36

6.2 DevOpenDriver()

Description:

If an application wants to communicate with a board, it must call this function first. This

function checks if the device driver is available and opens a link to it. Once an link is
opened, all other functions can be used. Call DevCloseDriver() to close the link.

short DevQpenDrive ();

Return value:

Value

Description

DRV_NO_ERROR

0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 37

6.3 DevCloseDriver()

Description:

Close an open link to the device driver. An application has to call this function before it
ends.

short Devd oseDriver ();

Return value:

Value Description

DRV_NO_ERROR 0 =no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

38

6.4 DevGetBoardInfo()

Description:

With DevGetBoardInfo(), the user can read global information of all communication
boards the device driver knows. BOARD | NFO data structure describes the board
information data. This function can be used before opening a specific DEVICE with the
DevinitBoard() function.

short DevGet Boardl nfo (

BOARD _| NFO *pvDat a) ;

Parameter:
Type Parameter Description
BOARD_INFO * pvData Pointer to the user data buffer

Data structure:

typedef struct tagBOARD | NFO{

unsi gned char abDri ver Version[16] ;

struct {
unsi gned short
unsi gned short
unsi gned | ong
unsi gned short

usBoar dNunber ;
usAvai | abl e;

ul Physi cal Addr ess;

usl r gNunber ;

} tBoard [MAX_DEV_BQARDS] ;

} BOARD_| NFO,

/1 DRV version information

/1 DRV board nunber

/1 DRV board is avail able
/1 DRV physical DPM address
/1 DRV irq nunber

Type Parameter Description
Unsigned short usBoardNumber Always 0
Unsigned short usAvailable 0 = board not available; 1 = board available

Unsigned long

ulPhysicalAddress

Physical memory address

Unsigned short

uslrgqNumber

Number of the hardware interrupt

Return value:

Value

Description

DRV_NO_ERROR

0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

39

6.5 DevGetBoardInfoEx()

Description:

With DevGetBoardInfoEx(), the user can read global information of all communication
boards the device driver knows. BOARD | NFCEX data structure which describes the
board information data. This function can be used before opening a specific DEVICE
with the DevInitBoard() function.

short DevGet Boardl nfo (BOARD | NFOCEX *pt Boar dl nf 0) ;
Parameter:
Type Parameter Description

BOARD_| NFOEX*

pt Boar dI nf oEx

Pointer to BOARD_| NFOEX data structure

Data structure:

typedef struct tagBOARD_| NFOEX{
unsi gned char abDri ver Version[16] ;

struct {
unsi gned short
unsi gned short
unsi gned | ong
unsi gned short
DRI VERI NFO
FI RMMAREI NFO
DEVI NFO
RCSI NFO
VERSI ONI NFO

usBoar dNunber ;
usAvai | abl €;

ul Physi cal Addr ess;
usl r gNunber ;
tDriverlnfo;

t Fi r mrar e;

t Devi cel nf o;

t Resl nf o;
tDriverlnfo;

} tBoard [MAX_DEV_BQARDS];

} BOARD_| NFCEX;

/1 DRV version information

/1 DRV board nunber

/1 DRV board is avail able
/1 DRV physical DPM address
/1 DRV irq nunber

/1l Driver info structure
/!l Driver info structure
/! Device info structure
/'l RCS info structure
/'l Version info structure

Type Parameter Description
Unsigned short usBoardNumber Always 0
Unsigned short usAvailable 0 = board not available; 1 = board available

Unsigned long

ulPhysicalAddress

Physical memory address

Unsigned short

uslrgqNumber

Number of the hardware interrupt

DRIVERINFO tDriverInfo See DevGetlInfo() description
FIRMWAREINFO | tFirmware See DevGetlnfo() description
DEVINFO tDevicelnfo See DevGetlnfo() description
RCSINFO tRcslInfo See DevGetinfo() description
VERSIONINFO tDriverinfo See DevGetlnfo() description

Return value:

Value

Description

DRV_NO_ERROR

0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

40

6.6 DevinitBoard()

Description:

After an application has opened a link to the device driver, it must call
Devl ni t Boar d() before it can start with the communication. Devl ni t Boar d() tells
the device driver that an application wants to work with a defined board. The device
driver checks, if the board is physical available, if the board works properly and setup
up all the internal state flags for the addressed board.

short DevlnitBoard (unsigned short usDevNunber) ;

Parameter:
Type Parameter Description
Unsigned short usDevNumber Board number (0 .. 3)

Return value:

Value

Description

DRV_NO_ERROR

0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

41

6.7 DevExitBoard()

Description:

If an application wants to end communication it has to call DevExitBoard(). for each
board which has been opened by a previous call to DevlnitBoard(). These
function frees all internal driver structures and unlink itself from the communication

board.

short DevExitBoard (unsigned short usDevNunber) ;

Parameter:
Type Parameter Description
Unsigned short usDevNumber Board number (0 .. 3)

Return value:

Value

Description

DRV_NO_ERROR

0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 42

6.8 DevPutTaskParameter()

Description:

This function hands over parameter to a task. This is only possible, if the protocol picks
up the parameters of the DPM.

The parameters in the DPM will only be taken over from the tasks with the next
WARMSTART.

short DevPut TaskParaneter (unsigned short usDevNumber,
unsi gned short usNunber,
unsi gned short usSize,

voi d *pvDat a) ;
Parameter:
Type Parameter Description
unsigned short usDevNumber Board number (0 .. 3)
unsigned short usNumber Number of the parameter area (1 .. 7)
unsigned short usSize Size of the parameter area and length of the data to
be put
voi d* pvDat a Pointer to the user task parameters

Please notice, that you have to put the parameters in a structure according to the
protocol. The user has to build his own structure definition. The driver do not check the
parameters but it checks the length of the parameter structure. If the length of the user
data exceed the maximum length, the function call fails with an error. Invalid
parameters will be reported by the protocol.

Data structure:
typedef struct tagTASKPARAM {

unsi gned char abTaskPar anet er [64] ;
} TASKPARAM

Return value:

Value Description

DRV_NO_ERROR 0 =no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 43

6.9 DevGetTaskParameter()

Description:
This function reads the task parameter area from a task.

short DevGet TaskParaneter (unsigned short usDevNumber,
unsi gned short usNunber,
unsi gned short usSize,

voi d *pvDat a) ;
Parameter:
Type Parameter Description
unsigned short UsDevNumber Board number (0 .. 3)
unsigned short UsNumber Task number (1, 2)
unsigned short UsSize Size of the user data buffer and length of the data to be
read
voi d * pvData Pointer to the user data buffer

Please notice, that you get the parameters in a structure according to the protocol. The
user has to build his own structure definition. The driver do not check the parameters
but it checks the length of the parameter structure. If the length of the user data
exceed the maximum length, the function call fails with an error.

Data structure:
typedef struct tagTASKPARAM {

unsi gned char abTaskPar anet er [64] ;
} TASKPARAM

Return value:

Value Description

DRV_NO_ERROR 0 =no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 44

6.10 DevReset()

Description:

This function provokes a reset on a communication board. The passed parameter
usMode switches a coldstart or a warmstart. The amount of the timeout ulTimeout
depends on the used protocol and reset mode. A coldstart needs a longer time then a
warmstart because there will be made a complete hardware check by the device
operating system. Usually the time for a coldstart will be between 3 and 10 seconds, a
warmstart needs between 2 and 8 seconds.

short DevReset (unsigned short usDevNunber,
unsi gned short usMbde,
unsi gned | ong ul Ti meout);

Parameter:

Type Parameter Description

unsigned short usDevNumber Board number (0 .. 3)

unsigned short usMode 2 = COLDSTART, new initializing
3 = WARMSTART, initializing with parameters
4 = BOOTSTART, switches the board into bootstrap loader
mode. COM modules use this mode to store user
parameters

unsigned long ulTimeout Timeout

Return value:

Value Description

DRV_NO_ERROR 0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 45

6.11 DevSetHostState()

Description:

The DevSetHostState() function is used, to signal the communication board that a user
application is running or not.

The utilization of the host state depends on the used communication protocol. Some of
the message based and the 1/O based protocols uses this state to signal a requesting
station, no user application is running. I/O based protocol, such as InterBus S or
PROFIBUS-DP, can use this state to shut down data transmission to other stations.
On the most of the protocols, the use of the host state can be configured. A detailed
description can be found in the corresponding protocol manual.

short DevSetHost State (unsigned short usDevNunber,
unsi gned short ushMbde,
unsi gned | ong ul Ti neout);

Parameter:

Type Parameter Description

unsigned short usDevNumber Board number (0 .. 3)

unsigned short usMode 0 =HOST_NOT_READY; 1 = HOST_READY
unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

The timeout parameter can be used by the user application to change the host state
and wait until the communication state of the board has also changed.
That means, if the host set HOST _READY and a timeout is configured, then the
function returns, if the communication state of the board is ready. Otherwise a timeout
occurs and the function returns with an error, which means, the board has not reached
communication ready state. If the host set HOST_NOT_READY and a timeout is
given, so the function will return, if the communication state of the board reaches not
ready. If a timeout occurs, the communication state has not reached not ready and the
function will return with an error. If no timeout is given, only the used host state will be
written to the communication board. No further check will be done. The timeout period
depends on the used bus system and varies between 100 ms up to several seconds.

Return value:

Value Description

DRV_NO_ERROR 0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 46

6.12 DevTriggerWatchdog()

Description:

The DevTriggerWatchdog() command can be used to check the device operating
system for normal operation. The parameter function determines what action on the
boards watchdog should be done (WATCHDOG START, WATCHDOG STOP). The function
reads the Pc\Wat chDog cell and write it to the DevwatchDog cell of the DPM. With
writing a number unequal to zero in the DevWat chDog cell of the DPM, the watchdog
function of the board is activated. Since the watchdog is activated, the application must
trigger the watchdog within the time which is defined in the protocols database. The
application must not generate a watchdog counter, because the operating system of
the board increments the watchdog counter. This is done by giving an unequal number
(1) in the PcWat chDog. The trigger function take this number and write it to the
DevWat chDog cell. If the operating system reads a number unequal to zero from the
DevWat chDog then it increments the number and write it back to the Pc\Wat chDog
cell. Every time the function is called, it returns the actual watchdog counter to the
application. So, if the application reads the same counter value twice or more after the
call to the trigger function, the board failed. To stop the watchdog, the function writes a
0 to the Dev\Wat chDog cell. After this the boards operating system stops the
watchdog checking.

short DevTriggerWat chDog (unsi gned short usDevNunber,
unsi gned short usFunction,
unsi gned short *usDevWat chDog) ;
Parameter:
Type Parameter Description
Unsigned short UsDevNumber Board number (0 .. 3)
Unsigned short UsFunction Function of the watchdog

0 = WATCHDOG_STOP
1=WATCHDOG_START

Unsigned short*

usDevVWat chDog

Pointer to a user buffer, where the watchdog counter value
can be written to

Return value:

Value

Description

DRV_NO_ERROR

0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface a7

6.13 Message Transfer Functions

Following functions are defined for message transfer:
o DevCet MBXSt at e()

o DevPut Message()

o DevCet Message()

6.13.1 DevGetMBXState()

Description:

This function reads the actual state of the host and device mailbox of a communication
board.

You can use this function for writing applications to poll the device without waiting for
device events.

short DevGet MBXState (unsigned short usDevNunber,
unsi gned short *pusDevMBXSt at e,
unsi gned short *pusHost MBXSt at e) ;

Parameter:
Type Parameter Description
unsigned short usDevNumber Board number (0 .. 3)

unsigned short * pusDevMBXSt at e | Pointer to user buffer, to hold the device mailbox state
0 = DEVICE_MBX_EMPTY; 1 = DEVICE_MBX_FULL

unsigned long * pusHost MBXSt at e | Pointer to user buffer, to hold the host mailbox state
0 = HOST_MBX_EMPTY; 1 = HOST_MBX_FULL

Return value:

Value Description

DRV_NO_ERROR 0 =no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 48

6.13.2 DevPutMessage()

Description:

This function sends (transfers) a message to the communication board. The function
copies the number of data, given in the length entry (msg.In) of the message structure
and the message header.

If no timeout (ul Ti meout = 0) is used, the function returns immediately. The return
code shows if the function was able to write the message to the device or not.
If a timeout (ul Ti meout !=0) is used and the send mailbox of the device is empty, the
message is written to the mailbox and the function returns also immediately. If the
mailbox is full, the function will wait until the mailbox is free. If this does not happen
during the timeout duration, the function returns with an error code.
How the timeout is realized depends on the mode the DEVICE is configured. Polling
mode will run a loop in the driver while waiting the timeout duration
In interrupt mode the calling application will block to free the CPU for other work..

short DevPut Message (unsi gned short usDevNunber,
MSG_STRUC *pt Message,
unsi gned | ong ul Tineout);

Parameter:

Type Parameter Description

unsigned short usDevNumber Board number (0 .. 3)

M5G_STRUC * pt Message Pointer to the message data

unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

Return value:

Value Description

DRV_NO_ERROR 0 = no error

The message have to be compatible to the message format and it must be consistent,
according to the protocol. The structure of the standard message is located in the
users interface header file.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 49

Message structure:

#pragma pack(1)
/1 max. length is 288 Bytes, nax. nessage length is 255 + 8 Bytes
typedef struct tagMSG STRUC {

unsi gned char rXx; /'l Receiver
unsi gned char t x; [/l Transmtter
unsi gned char I n; /1 Length
unsi gned char nr; /1 Nurber
unsi gned char a; /1 Answer
unsi gned char f; /1 Faul t
unsi gned char b; /1 Command
unsi gned char e; /1 Extension
unsi gned char data[255]; // Data
unsi gned char dummy[25] ; /1 for conpatibility with ol der

/'l versions
} MSG_STRUC
#pragma pack()

Note: Notice, for more information about the message structure refer to the
corresponding manual.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 50

6.13.3 DevGetMessage()

Description:

This function reads a message out from a communication board and puts it into the
data buffer that is given by the user. The function checks if the message fits in the
users data buffer. This is done by comparing the parameter usSi ze with the length
which is given in the message structure. If the message doesn't fit, the function will fail
and returns an error.

If no timeout (ul Ti meout = 0) is used, the function returns immediately. The return
code shows if the function was able to read a message from the device or not.

If a timeout (ul Ti meout !=0) is used and a message is available, the function reads
the message and returns also immediately. If no message is available, the function will
wait until a message is available. If this does not happen during the timeout duration,
the function returns with an error code.

How the timeout is realized depends on the mode the DEVICE is configured. Polling
mode will run a loop in the driver while waiting the timeout duration
In interrupt mode the calling application will blocked to free the CPU for other work..

short DevGet Message (unsigned short usDevNunber,
unsi gned short usSi ze,
M5G_STRUC *pt Message,
unsi gned |ong ul Tineout);

Parameter:

Type Parameter Description

unsigned short usDevNumber Board number (0 .. 3)

unsigned short usSize Size of the user data buffer (maximum length to be read)
M5G_STRUC * pt Message Pointer to the message data

unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

Notice, the size of the user data buffer has to be large enough to hold all the data of a
message. The maximum length of a message can be taken from the message
structure in the users interface header file.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

Message structure:

#pragma pack(1)
typedef struct tagMSG STRUC {// max. 288 Bytes, max. nmsg |len 255 + 8 Bytes

unsi gned char rX; /'l Receiver

unsi gned char tx; [/l Transmtter

unsi gned char I'n; /1 Length

unsi gned char nr; /1 Nurber

unsi gned char a; /1 Answer

unsi gned char f; /1 Faul t

unsi gned char b; /1 Command

unsi gned char e; /1 Extension

unsi gned char data[255]; // Data

unsi gned char dummy|[25] ; /1 for conpatibility with ol der versions
} MSG_STRUC;

#pragma pack()

Return value:

Value description

DRV_NO_ERROR 0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

52

6.14 DevGetTaskState()

Description:

This function reads one of the task state areas of a DEVICE. The data will be
transferred into the user data buffer. The function copies the number of data, given in
the parameter usSi ze.

short DevGet TaskState (unsigned short usDevNunber,
unsi gned short usNumber ,
unsi gned short usSi ze,
voi d *pvDat a) ;
Parameter:
Type Parameter Description
Unsigned short usDevNumber Board number (0 .. 3)
Unsigned short usNumber Number of the state area (1, 2)
Unsigned short usSize Size of the user data buffer (maximum length to be read)
Void * pvData Pointer to the user data buffer

To handle the data, please use the structures given by the protocols.

Notice, the maximum size of the area given by the user can be taken from the task
parameter structure in the users interface header file.

Data structures:

typedef struct tagTASKSTATE {

unsi gned char
} TASKSTATE;

Return value:

abTaskSt at e[64] ;

Value

Description

DRV_NO_ERROR

0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 53

6.15 DevGetinfo()

Description:

This function reads the various information out from a communication board and the
driver internal state information for a board. The information that can be read are as

followed:

- Driver state information GET_DRIVER_INFO

- Board version information GET_VERSION_INFO

- Board firmware information GET_FIRMWARE_INFO
- Task information area GET_TASK_INFO

- Board operation system information GET_RCS_INFO

- Device information area GET_DEV_INFO

- Device 10 information GET_IO_INFO

- Device 10 send data GET_IO_SEND_DATA

The function copies the number of data, given in the parameter usSi ze. For data
structure definitions look up in the user interface header file.

short DevGetlnfo (unsigned short usDevNunber,
unsi gned short usl nf 0Ar ea,
unsi gned short usSi ze,
voi d *pvDat a) ;

Parameter:

Type Parameter Description

Unsigned short usDevNumber Board number (0 .. 3)

Unsigned short usinfoArea Defines which area have to be read
1 =GET_DRIVER_INFO

2 = GET_VERSION_INFO

3 = GET_FIRMWARE_INFO

4 = GET_TASK_INFO
5=GET_RCS_INFO

6 = GET_DEV_INFO

7 =GET_IO_INFO

8 = GET_IO_SEND_DATA

Unsigned short usSize Size of the user data buffer and number of bytes to be read

Void * pvData Pointer to the user data buffer

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

54

Defined data structures:
/I GETINFO information definitions

#defi ne GET_DRI VER | NFO 1

/1l Internal driver state information structure

typedef struct tagDRI VERI NFQ{
unsi gned | ong ul OpenCnt; /1 DevQOpen() counter
unsi gned | ong ul Cl oseCnt;
unsi gned | ong ul ReadCnt;
unsigned long ul WiteCnt;

unsi gned | ong ul | RQCnt; /1 Nurmber of board interrupts
unsi gned char bl ni t MsgFl ag; /1 Actual init state
unsi gned char bReadMsgFl ag; /1 Actual read nmil box state

unsi gned char bWiteMsgFlag; // Actual wite nmil box state
unsi gned char blLastFunction; // Last driver function

unsi gned char bWiteState; /1 Actual wite conmand state
unsi gned char bReadSt at e; /1 Actual read conmand state
unsi gned char bHost Fl ags; /1 Actual host flags

unsi gned char bM/DevFl ags; /1 Actual device flags

unsi gned char bEx| OFl ag; /1 Actual 10 flags

unsi gned | ong ul Exl OCnt ; /1 DevExchangel () counter

} DRI VERI NFO,

#defi ne GET_VERSI ON_| NFO 2
/1 Serial nunber and OS versions information
typedef struct tagVERSI ONl NFO {

unsi gned | ong ul Dat e; /1 Manufactor date (BCD coded)
unsi gned | ong ul Devi ceNo; /1 Device nunber

unsi gned | ong ul Seri al No; /1 Serial nunber

unsi gned | ong ul Reserved; /'l reserved

unsi gned char abPcCsNane0[4] ; /1 Operating systemcode 0
unsi gned char abPcCsNanel[4] ; /1 Operating systemcode 1
unsi gned char abPcCsNane2[4] ; /1 Operating system code 2

unsi gned char abCem dentifier[4]; // OEMreserved
} VERSI ONI NFO,

#define GET_FI RMMRE INFO 3
/1 Device firmare information
typedef struct tagFl RMARElI NFO {
unsi gned char abFi r mnar eNane[16] ; /1 Firmware nane
unsi gned char abFi r mnar eVer si on[16] ; /1 Firmnare version
} FI RMAAREI NFO,

#defi ne GET_TASK | NFO 4
/1 Device task information
typedef struct tagTASKI NFO {

struct {
unsi gned char abTaskNane[8] ; /1 Tasknane
unsi gned short usTaskVersi on; /1 Task version
unsi gned char bTaskConditi on; /'l Actual task state
unsi gned char abreserved[5]; /'l reserved
} tTasklnfo [7];
} TASKI NFQ

/1 Devd ose() counter (not used)
/1 Nunber of DevGet Message() conmands
/1 Nunber of DevPut Message() conmands

(BCD coded)
(BCD coded)

(ASCI 1)
(ASCI 1)

(ASCI 1)
(nunber)

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 55

#defi ne GET_RCS_| NFO 5

/1 Device operating system (RCS) infornmation

typedef struct tagRCSINFO {
unsi gned short usRcsVersion; // Device RCS version (nunber)
unsi gned char bRcsError; /1 Operating systemerrors
unsi gned char bHost Wat chDog; // Host watchdog val ue
unsi gned char bDevWatchDog; // Device watchdog val ue
unsi gned char bSegnent Count; // RCS segnent free counter
unsi gned char bDevi ceAdress; // RCS device base address

unsi gned char bDriver Type; /1 RCS driver type
} RCSI NFO,
#defi ne GET_DEV_| NFO 6

/1 Device description
typedef struct tagDEVI NFO {

unsi gned char bDpnSi ze; /1 Device DPMsize (2,8..) (nunber)
unsi gned char bDevType; /1 Device type (numnber)
unsi gned char bDevModel ; /1 Device nodel (nunber)
unsi gned char abDevldentifier[3];// Device identification (ASCHI)

} DEVI NFQ

#define GET_I O | NFO 7

/1 Device exchange |10 infornmation
typedef struct tagl O NFO {

unsi gned char bConBit; /1 Actual state of the COMbit (O, 1)
unsi gned char bl OExchangeMbde; /1 Actual data exchange node (O..5)
unsi gned | ong ul | OExchangeCnt ; /1 Exchange | O counter

} 1O NFQ

Return value:

Value Description

DRV_NO_ERROR 0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 56

6.16 Process Data Transfer Functions

Following functions are defined for process data transfer:

-DevExchangel ()

Is the standard function for the data transfer of process image datas. Only general bus
errors are detected by this function. To get error information about specific devices, the
function DevGetTaskState() must be used after each call to DevExchangel () to
read the task information field.

- DevExchangel CErr ()

Is an extension of the DevExchangelO() function. It contains the COMSTATE structure
as an parameter, where device specific data will be transferred by each call to the
function. No additional call of DevGetTaskState() is required.

- DevExchangel CEXx()
This function is a special function to work with COM nodul es.

-DevReadSendDat a()
This function can be used to read back the send process image from a device

ATTENTION: By using DevExchangel () it is not possible for master devices to
recognize the fault of a specific bus device. Only global errors like
whole bus disruptions or communication breaks to all configured device
will be indicated by this function.

To get specific device fault, the application must read the ""TaskState-
Field", where device specific datas are located.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 57

6.16.1 DevExchangelO()

Description:

The DevExchangel () function is used, to send I/O data to and receive I/O data
from a communication board. This function is able to send and receive I/O data at
once. If one of the size parameter is set to zero, no action will be taken for the
corresponding function. This means, if usSendSi ze is set to zero, send data will not
be written to the board. If usRecei veSi ze is set to zero, receive data will not be read
from the board.

The user can wait until a complete action is done, by the use of ul Ti meout . If an
timeout occurs, the function will return with an error. If no timeout is given, the function
will return immediately.

The function will automatically recognize the synchronization mode of the process data
transfer and handle it in the defined way.

ATTENTION: Only general bus errors are detected by this function.Use
DevGetTaskState() after each call to DevExchangelO() to read the task

information field and to check device specific errors.

short DevExchangel O (unsigned short usDevNunber,
unsi gned short usSendCOf f set ,
unsi gned short usSendSi ze,

voi d *pvSendDat a,
unsi gned short usRecei veOf f set ,
unsi gned short usRecei veSi ze,

voi d *pvRecei veDat a,

unsi gned | ong ul Ti neout) ;
Parameter:
Type Parameter Description
unsigned short usDevNumber Board number (0 .. 3)
unsigned short usSendOffset Byte offset in the send IO data area of the communication
board
unsigned short usSendSize Length of the send 10 data
void * pvSendData Pointer to the user send data buffer

unsigned short

usReceiveOffset

Byte offset in the receive |0 data area of the communication
board

unsigned short

usReceiveSize

Length of the receive 10 data

void *

pvReceiveData

Pointer to the user receive data buffer

unsigned long

ulTimeout

Timeout in milliseconds; 0 = no timeout

Return value:

Value

description

DRV_NO_ERROR

0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 58

6.16.2 DevExchangelOErr()

Description:

DevExchangel CErr () is an extension of the DevExchangel () function. The
handling for sending and receiving 1/0O data acts in the same way like in the
DevExchangel () function. Furthermore, the function has an additional parameter
which holds state information according to the configured bus devices. This
information is only available on master DEVICEs.

Normally the DEVICE will set its communication ready bit (COM flag) if at least one of
the configured bus devices is connected and running properly. If more modules are
configured, the COM flag can not signal an error for a specific

device. The COM flag is only able to indicate global failures like whole bus disruptions
or communication breaks to all configured devices. In this case the state field
information can be used to detect errors of a specific bus device.

Please check, if the DEVICE firmware of the master device supports the several
modes of state field handling.

usDevNunber,
usSendf f set
usSendsSi ze,
*pvSendDat a,
usRecei veO f set
usRecei veSi ze

short DevExchangel OErr (unsigned short
unsi gned short
unsi gned short
voi d

unsi gned short
unsi gned short

voi d *pvRecei veDat a
COMSTATE *pt St at e,
unsi gned | ong ul Ti meout) ;
Parameter:
Type Parameter Description
unsigned short usDevNumber Board number (0 .. 3)
unsigned short usSendOffset Byte offset in the send IO data area of the communication
board
unsigned short usSendSize Length of the send 10 data
void * pvSendData Pointer to the user send data buffer

unsigned short

usReceiveOffset

Byte offset in the receive |0 data area of the communication
board

unsigned short

usReceiveSize

Length of the receive 10 data

void * pvReceiveData Pointer to the user receive data buffer
COMSTATE * ptState Pointer to the user COMSTATE buffer
unsigned long ulTimeout Timeout in milliseconds; 0 = no timeout

Return value:

Value

description

DRV_NO_ERROR

0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

COMSTATE structure definition:

/1 Communi cation state field structure
typedef struct tagCOVSTATE {

GLD16U usMode; /1 Actual node

GLD16U usSt at eFl ag; /1 State flag

GLD8U abSt at e[64] ; // State area
} COMBTATE;

The COMSTATE structure can be transferred on each function call.

- usMode Defines the actual configured transfer mode of the state field
OxFF = Not supported by the firmware
3 = Cyclic transfer of the state field including the state error flag
(usStateFlag)
4 = Event driven transfer of the state field including the usStateFlag

- usStateFlag 0 = No entrys in the state field (abState[])
1 = Entrys in the state available

- abState[64] Buffer of the actual state field. Refer to the protocol interface manual
for a description of the state buffer.

Example:

/1 Read process inage and state field information
if ((sRet = DevExchangel CErr(usBoar dNunber,
0,
0,
NULL,
usReadCf f set,
usReadSi ze,
&abl OReadDat a[0] ,
&t Contt at e,
100L)) == DRV_NO ERROR) {
/] Check state field transfer node
switch (tConttate.usMde) {
case STATE_MODE_3:
/1 Check state field usStateFlag signals entries
if (tConState.usStateFlag != 0) {
/1 Show COM errors
}
br eak;
case STATE_MODE 4:
/1 Check state field usStateFlag signals new entries
if (tConState.usStateFlag != 0) {
/1 Show COM errors
}
br eak;
defaul t:
/1 State node unknown or not i nplenented
/! Read the task state field by yourself
if ((sRet = DevGetTaskState(....)) != DRV_NO ERROR) {
/1 Error by reading the task state
}
br eak;
} /* end switch */

}

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 60

6.16.3 DevExchangelOEXx()

Description:

The DevExchangel OEx() function is created for the use with COM mod-ules. It
works in the same way like the DevExchangel () function, except the data transfer
mode must be defined by the application.

COM modules are normally not able to signal the actual data transfer modes to the
device driver, which means the driver can not decide how to act with the DPM.
Therefore the evExchangel OEx() function gets a new parameter which tells the
driver how to handle the DPM.

The configuration of the COM modules are done by writing WARMSTRART pa-rameters
to the board. During configuration, the user defines the 10 data transfer mode. The
configured mode must be given the evExchangel OEx() function to make sure the
driver handles the DPM in the right manner.

short DevExchangel OEx (unsigned short usDevNunber,
unsi gned short ushMbde,
unsi gned short usSendOf f set ,
unsi gned short usSendSi ze,
voi d *pvSendDat a,
unsi gned short usRecei veOf f set ,
unsi gned short usRecei veSi ze,
voi d *pvRecei veDat a,
unsi gned | ong ul Ti meout) ;
Parameter:
Type Parameter Description
unsigned short usDevNumber Board number (0 .. 3)
unsigned short usMode Data transfer mode (0 . . 4)
unsigned short usSendOffset Byte offset in the send IO data area of the communication
board
unsigned short usSendSize Length of the send 10 data
unsi gned char * |pvSendData Pointer to the user send data buffer
unsigned short usReceiveOffset | Byte offset in the receive 10 data area of the communication
board
unsigned short usReceiveSize Length of the receive 10 data
unsi gned char * |pvReceiveData | Pointer to the user receive data buffer
unsi gned | ong ulTimeout Timeout in milliseconds; 0 = no timeout
Return value:
Value description
DRV_NO_ERROR 0 = no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 61

6.16.4 DevReadSendData()

Description:

The DevReadSendDat a() function is used, to read back send data which are written
to send data area with the function DevExchangel () .

This function can be used by applications to update the user input after the data are
successfully written to the communication board.

short DevReadSendData (unsi gned short usDevNunber,

unsi gned short usOr f set

unsi gned short usSi ze,

voi d *pvSendDat a) ;
Parameter:
Type Parameter Description
unsigned short usDevNumber Board number (0 .. 3)
unsigned short usOffset Byte offset in the send 10 data area of the communication

board

unsigned short usSize Length of the send 10 data to be read
voi d * pvSendData Pointer to the user send data buffer
Return value:
Value description
DRV_NO_ERROR 0 =no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface

62

6.16.5 DevReadWriteDPMData()

Description:

The DevReadSendDat a() function is used, to read back send data which are written
to send data area with the function DevExchangel () .

This function can be used by applications to update the user input after the data are

successfully written to the communication board.

short DevReadSendData (unsi gned short usDevNunber,
unsi gned short ushbde,
unsi gned short usOr f set
unsi gned short usSi ze,
voi d *pvDat a) ;
Parameter:
Type Parameter Description
unsigned short usDevNumber Board number (0 .. 3)
unsigned short usMode 1= PARAMETER_READ
0 = PARAMETER_WRITE
unsigned short usOffset Byte offset in DPM of the communication board (0..1022)
unsigned short usSize Length of the data to be read/written
voi d * pvData Pointer to the user data buffer

The structure definition RAWDATA can be used as a data buffer definition.

/1 Device raw data structure
typedef struct tagRAWATA {

unsi gned char abRawDat a[1022] ; /] Definition of the |ast KByte
} RAVDATA;
Return value:
Value description
DRV_NO_ERROR 0 =no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

The Application Programming Interface 63

6.16.6 DevDownload()

Description:

The DevDownl oad() function can be used to either load a firmware or configuration
file to the hardware.

The whole data transfer will be executed in the download function. Therefore, the
function loads the file into the memory and transfers it from the memory to the
hardware. The transfer function is running in a “loop”, so no other activity during a
download is possible.

Firmware files must have a correct file extensions, which is checked in the download
function. Configuration files will be checked by the operating system and rejected, if
the database name is not known to the firmware.

short DevDownl oad (unsigned short usDevNunber,

unsi gned short ushbde,
unsi gned char *pszFi | eNane,
DWORD *pdwByt es) ;
Parameter:
Type Parameter Description
unsigned short usDevNumber Board number (0 .. 3)
unsigned short usMode 1 = FIRMWARE_DOWNLOAD
2 = CONFIGURATION_DOWNLOAD
unsigned *char pszFileName Pointer to the filename with or without a complete path
description. This must be a multibyte string zero terminated.
DWORD * pdwBytes Pointer to a dword value which receives the number of
bytes transferred to the hardware

Return value:

Value Description

DRV_NO_ERROR 0 =no error

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Error Numbers

64

7

7.1

Error Numbers

List of Error Numbers

The column hint shows if there are additional information. If 'Yes' then see chapter
hints to error numbers, which is the next chapter.

Value |Parameter Description Hint
0 DRV_NO_ERROR No error
-1 DRV_BOARD_NOT_INITIALIZED DRIVER Board not initialized yes
-2 DRV_INIT_STATE_ERROR DRIVER Error in internal init state
-3 DRV_READ_STATE_ERROR DRIVER Error in internal raed state
-4 DRV_CMD_ACTIVE DRIVER Command on this channel is active
-5 DRV_PARAMETER_UNKNOWN DRIVER Unknown parameter in function occurred
-6 DRV_WRONG_DRIVER_VERSION | DRIVER Version is incompatible with API yes
-7 DRV_PCI_SET_CONFIG_MODE DRIVER Error during PCI set config mode
-8 DRV_PCI_READ_DPM_LENGTH DRIVER Could not read PCI dual port memory

length
-9 DRV_PCI_SET_RUN_MODE DRIVER Error during PCI set run mode
-11 DRV_DEV_NOT_READY DEVICE Not ready (ready flag failed) yes
-12 DRV_DEV_NOT_RUNNING DEVICE Not running (running flag failed) yes
-13 DRV_DEV_WATCHDOG_FAILED DEVICE Watchdog test failed
-14 DRV_DEV_OS_VERSION_ERROR | DEVICE Signals wrong OS version yes
-16 DRV_DEV_MAILBOX_FULL DEVICE Send mailbox is full
-17 DRV_DEV_PUT_TIMEOUT DEVICE PutMessage timeout yes
-18 DRV_DEV_GET_TIMEOUT DEVICE GetMessage timeout yes
-19 DRV_DEV_GET_NO_MESSAGE DEVICE No message available
-20 DRV_DEV_RESET_TIMEOUT DEVICE RESET command timeout yes
-21 DRV_DEV_NO_COM_FLAG DEVICE COM-flag not set yes
-22 DRV_DEV_EXCHANGE_FAILED DEVICE |10 data exchange failed
-23 DRV_DEV_EXCHANGE_TIMEOUT | DEVICE IO data exchange timeout yes
-24 BRV_DEV_COM_MODE_UNKNOW DEVICE IO data mode unknown
-25 DRV_DEV_FUNCTION_FAILED DEVICE Function call failed
-26 DRV_DEVDPMSIZE_MISMATCH DEVICE DPM size differs from configuration
-27 DRV_DEV_STATE_MODE_UNKNO | DEVICE State mode unknown

WN

-30 DRV_USER_OPEN_ERROR USER Driver not open (device driver not loaded) |yes
-31 DRV_USER_INIT_DRV_ERROR USER Can’t connect with device
-32 DRV_USER_NOT_INITIALIZED USER Board not initialized (Devinitboard() not

called)
-33 DRV_USER_COM_ERR USER IOCTRL function failed yes

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd:Linux#2EN

Error Numbers

65

DRV_USER_DEV_NUMBER_INVAL
ID

USER Parameter DeviceNumber invalid

DRV_USER_INFO_AREA_INVALID

USER Parameter InfoArea unknown

DRV_USER_NUMBER_INVALID

USER Parameter Number invalid

DRV_USER_MODE_INVALID

USER Parameter Mode invalid

DRV_USER_MSG_BUF_NULL_PTR

USER NULL pointer assignment

DRV_USER_MSG_BUF_TOO_SHO
RT

USER Message buffer too short

DRV_USER_SIZE_INVALID

USER Parameter Size invalid

DRV_USER_SIZE_ZERO

USER Parameter Size with zero length

DRV_USER_SIZE_TOO_LONG

USER Parameter Size too long

DRV_USER_DEV_PTR_NULL

USER Device address is a NULL pointer

DRV_USER_BUF PTR_NULL

USER Pointer to buffer is a NULL pointer

DRV_USER_SENDSIZE_TOO_LON
G

USER Parameter SendSize too long

DRV_USER_RECVSIZE_TOO_LON
G

USER Parameter ReceiveSize too long

DRV_USER_SENDBUF_PTR_NULL

USER Pointer to send buffer is a NULL pointer

DRV_USER_RECVBUF_PTR_NULL

USER Pointer to receive buffer is a NULL pointer

-100

DRV_USER_FILE_OPEN_FAILED

USER File not opened

-101

DRV_USER_FILE_SIZE_ZERO

USER File size zero

-102

DRV_USER_FILE_NO_MEMORY

USER not enough memory to load file

-103

DRV_USER_FILE_READ_FAILED

USER File read failed

-104

DRV_USER_INVALID_FILETYPE

USER File type invalid

-105

DRV_USER_FILENAME_INVALID

USER File name not valid

1000

RCS_ERROR

Board operation system errors will be passed with
this offset (e.g. error 1234 means RCS error 234).
Only if a ready fault occurred during board
initialization.

Copyright * Hilscher Gesellschaft fiir Systemautomation * Dd:Linux#2EN

Error Numbers

66

7.2 Hints to Error Numbers

This chapter contains more information about possible reasons to certain error

numbers.

Error: -1

The communication board is not initialized by the driver.
No or wrong configuration found for the given board.

- Check the driver configuration

- Driver function used without calling DevOpenDriver() first

Error: -6
The device driver version does not corresponds to the driver API version

- Make sure to use the same version of the device driver and the driver API

Error: -11
Board is not ready.
This is a general error, the board has a hardware malfunction.

Error: -12

At least one task is not initialized. The board is ready but not all tasks are running.
- No data base is loaded into the device

- Wrong parameter that causes that a task can't initialize. Use ComPro menu
Online-task-version.

Error: -14

No license code found on the communication board.

- Device has no license for the used operating system or customer software.
- No firmware or no data base on the device loaded.

Error: -17

No message could be send during the timeout period given in the

DevPut Message() function.

- Using device interrupts

Wrong or no interrupt selected. Check interrupt on the device and in driver
registration. They have to be the same!. Interrupt already used by an other PC
component.

- Device internal segment buffer full

Put Message() function not possible, because all segments on the device are in
use. This error occurs, when only Put Message() is used but not Get Message() .
- HOST flag not set for the device

No messages are taken by the device. Use DevSetHostState() to signal a board an
application is available.

Error: -18

No message received during the timeout period given in the

DevCGet Message() function.

- Using device interrupts

Wrong or no interrupt selected. Check interrupt on the device and in driver
registration. They have to be the same!. Interrupt already used by an other PC
component.

- The used protocol on the device needs longer than the timeout period given in the
DevCGet Message() function

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Error Numbers

67

Error: -20

The device needs longer than the timeout period given in the DevReset () function
- Using device interrupts

This error occurs when for example interrupt 9 is set in the driver registration but no
or a wrong interrupt is jumpered on the device (=device in polimode).

Interrupt already used by an other PC component.

- The timeout period can differ between fieldbus protocols

Error: -21

The device can not reach communication state.
- Device not connected to the fieldbus

- No station found on the fieldbus

- Wrong configuration on the device

Error: -23

The device needs longer than the timeout period given in the

DevExchangel Q() function.

- Using device interrupts

Wrong or no interrupt selected. Check interrupt on the device and in driver
registration. They have to be the same!. Interrupt already used by an other PC
component.

Error: -30

The device driver could not be opened.

- Device driver not installed

- Wrong parameters in the driver configuration

If the driver finds invalid parameters for a communication board and no other boards
with valid parameters are available, the driver will not be loaded.

Error: -33

A driver function could not be called. This is an internal error between the device
driver and the API.

- Make sure to use a device driver and a API with the same version.

- An incompatible old driver API is used.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Development Environments 68

8 Development Environments

As we began with the CIF Device Driver code conversion for the Linux, the kernel
2.2.10 was the actual one. With the subsequent kernel development and their
distribution we tried to test and/or adjust the code to assure that our driver goes step
by step with this evolutionarty kernel development.

Please, consult the Chapter ,The Driver Versions* for more information.

The driver represents 32-bit kernel driver and runs in kernel space. It is implemented
as a character device driver, the code is written in C and compiled with gcc
compiler.

The Driver Setup and Test program was developed with GTK+, version 1.2.8.

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

Copyright

69

9 Copyright

Complete package is copyrighted by Hilscher GmbH and is licensed through the
GNU General Public License. You should have received a copy of the GNU Library

General Public License along with this package; if not, please refer to

Copyright * Hilscher Gesellschaft fur Systemautomation * Dd:Linux#2EN

www.gnu.org

	Introduction
	Linux
	The Driver Versions
	Supported Hilscher Cards
	Data transfer
	Terms for this Manual

	Getting Started
	Communication
	About the User Interface
	Message Interface and Process Data Image
	The Protocol Dependent and Independent User Interface

	Interface Structure
	Message and Process Data Communication
	Message Communication
	I/O Communication with a Process Image

	The Software Structure on the Communication Boards
	The Real-Time Operating System
	The Protocol Task

	The Device Driver
	General
	Package Contents
	Installation of the driver
	Device Driver startup/shutdown
	ISA Boards

	Programming Instructions
	Include the Interface API in Your Application
	Open and Close the driver
	Writing an Application
	Determine Device Information
	Message Based Application
	Process Data Image Based Application

	The Demo Application
	C-Example

	The Application Programming Interface
	API Functions Overview
	DevGetMBXState()
	DevPutMessage()
	DevGetMessage()
	DevExchangeIO()
	DevExchangeIOErr()
	DevExchangeIOEx()
	DevReadSendData()
	DevReadWriteDPMData()
	DevDownload()

	Error Numbers
	Development Environments
	Copyright

