

REGUL R400

Системное руководство

DPA-321

Версия 2.0

Август 2019

История изменений системного руководства

Версия системного руководства	Описание изменения
1.5	Добавлено описание индикаторов задней панели
1.6	Введение: внесены сведения о сертификации
1.7	Добавлена информация о поддерживаемых протоколах. Добавлена история изменений системного руководства
2.0	Изменение структуры системного руководства. Добавлен раздел «Техническое обслуживание»

СОДЕРЖАНИЕ

Введение	
Сведения о сертификации	
Аппаратная конфигурация	4 5 онтроллера 5 8 10 11 12 17 17
Описание составных частей контроллера	
Конфигурации контроллера	
Монтаж	10
Модули контроллера	11
Модули центрального процессора	12
Техническое обслуживание	
Приложение А. Перечень заказных позиций контроллера	

ВВЕДЕНИЕ

Контроллер REGUL R400 входит в семейство программируемых контроллеров REGUL RX00. Он представляет собой комбинацию человеко-машинного интерфейса и центрального процессора и предназначен для работы в локальных или распределенных системах управления.

Контроллер REGUL R400 может работать с крейтами расширения контроллеров серии REGUL.

Программирование и конфигурирование контроллера осуществляется с помощью программного обеспечения Epsilon LD. Порядок работы со средой разработки Epsilon LD описан в документе «Программное обеспечение Epsilon LD. Руководство пользователя».

Сведения о сертификации

Сведения о сертификации приведены на сайте http://www.prosoftsystems.ru/license

АППАРАТНАЯ КОНФИГУРАЦИЯ

Описание составных частей контроллера

Контроллер REGUL R400 выполнен в виде панели оператора. Внешний вид контроллера представлен на рисунке 1.

Рисунок 1 - Внешний вид контроллера REGUL R400

Контроллер состоит из следующих основных частей:

- металлический корпус;
- встроенный источник питания 24 В;
- центральный процессор;
- экран;
- емкостная сенсорная панель;
- пленочная клавиатура.

Габаритные размеры контроллера представлены на рисунке 2.

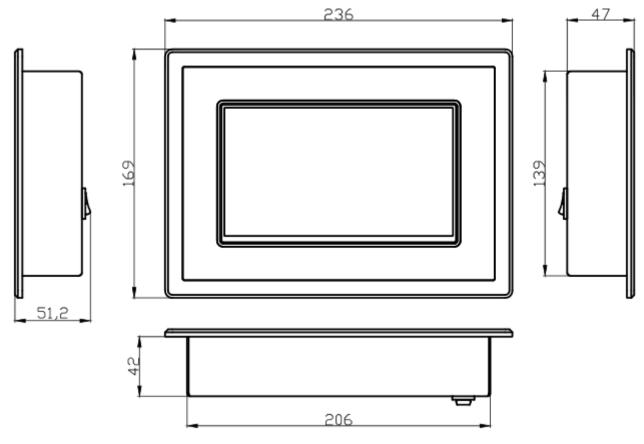


Рисунок 2 - Габаритные размеры контроллера

Корпус контроллера

Металлический корпус контроллера состоит из двух частей: лицевой панели и кожуха.

Лицевая панель является несущим элементом контроллера, на которую крепятся экран с сенсорной панелью.

На лицевой панели расположена пленочная клавиатура, состоящая из цифровой кнопочной панели, курсовых стрелок и клавиш «Отмена» и «Ввод». Кроме того, в верхнем левом углу панели находится двухцветный светодиод, отображающий состояние функционирования контроллера.

Кожух контроллера обеспечивает защиту внутренних элементов прибора. В нижнем торце кожуха расположена интерфейсная панель, на которую выведены все разъемы подключения внешних сигналов контроллера.

На задней панели кожуха расположены кнопка включения питания контроллера и функциональные индикаторы (Рисунок 3).

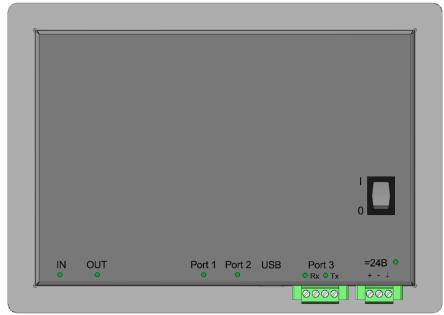


Рисунок 3 - Вид сзади контроллера REGUL R400

Источник питания

Встроенный источник питания обеспечивает преобразование входного напряжения 24 В постоянного тока в рабочее напряжение 5 В постоянного тока, используемое для питания внутренних потребителей контроллера. Кроме того, он обеспечивает гальваническое разделение внешней и внутренней цепей, фильтрацию внешнего питания.

Центральный процессор

Центральный процессор является основным элементом контроллера. Он выполняет следующие функции:

- самодиагностика, проверка конфигурации системы и работоспособности функциональных модулей;
- обмен информацией с модулями ввода/вывода по внутренней шине данных контроллера;
- логическая обработка данных и выдача сигналов управления в соответствии с прикладной программой пользователя;
- программная реализация встроенного человеко-машинного интерфейса;
- обмен информацией со сторонним оборудованием посредством встроенных интерфейсов по протоколам ГОСТ Р МЭК 60870-5-101 (Master/Slave), ГОСТ Р МЭК 60870-5-104 (Master/Slave), Modbus RTU (Master/Slave), Modbus TCP (Master/Slave);
- сохранение данных в энергонезависимой памяти.

Конфигурации контроллера

Контроллер поддерживает подключение крейтов расширения REGUL R200, R500 и R600. Для этого используются два порта подключения внутренней шины данных (IN и OUT), выведенных на интерфейсную панель контроллера.

Подключать крейты расширения можно по схеме «кольцо» или по схеме «звезда».

Подключение по схеме «кольцо» (Рисунок 5) резервирует линию связи, и в случае обрыва одной из них контроллер будет продолжать функционировать в полном объеме. В случае подключения крейтов по схеме «кольцо» порт IN контроллера R400 должен быть соединен с портом ОUT последнего (или единственного) крейта расширения.

В любом случае, порт OUT контроллера должен быть соединен с портом IN первого крейта расширения.

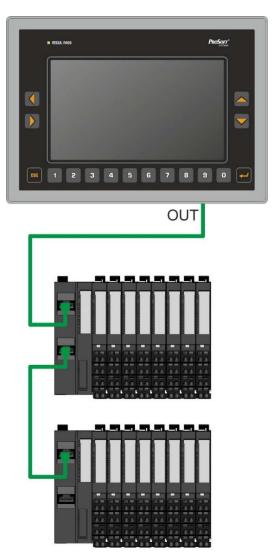


Рисунок 4 - Соединение крейтов по схеме «звезда»

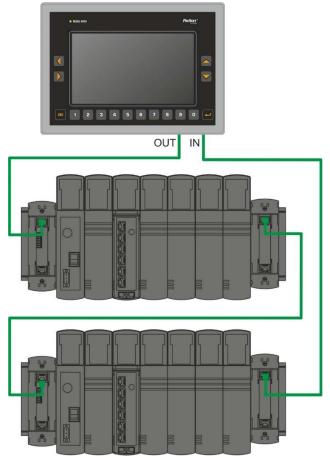


Рисунок 5 - Соединение крейтов по схеме «кольцо»

К контроллеру R400 можно подключить до 255 крейтов расширения серии REGUL. Причем в одной системе могут использоваться крейты расширения различных моделей контроллеров в любой конфигурации.

В качестве соединительных кабелей используются стандартные кабели категории 5 (Cat. 5) со стандартной для интерфейса Ethernet схемой расключения.

Допустимое расстояние между соединенными одним кабелем крейтами расширения составляет 100 метров.

Монтаж

Установка контроллера осуществляется в вырез монтажной панели или дверцы шкафа.

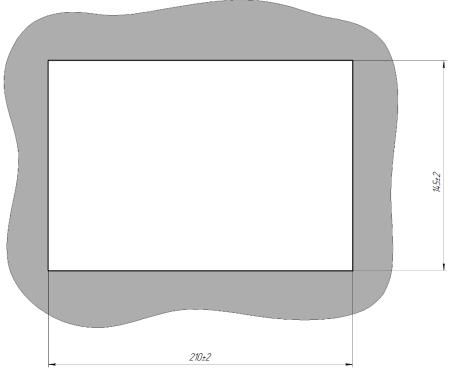


Рисунок 6 - Вырез в панели для установки контроллера

Не допускается устанавливать контроллер в вырез панели с подключёнными к ней разъемом питания или интерфейсными разъемами.

Крепление контроллера осуществляется с помощью четырех монтажных зажимов, входящих в комплект поставки.

Лицевая панель, при условии правильного монтажа контроллера, обеспечивает степень защиты от проникновения твердых предметов и воды на уровне IP66.

Заземление контроллера осуществляется посредством клеммы заземления разъема питания.

МОДУЛИ КОНТРОЛЛЕРА

Условное обозначение модулей формируется следующим образом:

Пример условного обозначения модуля – R400 CU 00 071, где:

- R400 модель контроллера;
- CU модуль центрального процессора;
- 00 количество каналов;
- 071 порядковый номер в модельном ряде и номер разработки.

Полное наименование модуля образуется из названия модуля и его условного обозначения. Пример полного наименования при заказе:

Модуль центрального процессора R400 CU 00 071.

Полный перечень позиций, доступных для заказа, приведен в Приложении А.

Модули центрального процессора

Таблица 1 – Технические характеристики модуля центрального процессора R400 CU 00 071

Наименование параметра, единица измерения	Значение
Диагональ экрана, дм	7
Разрешение экрана, пкс	800x480
Тип сенсорного экрана	емкостный
Объем ОЗУ, Гб	2
Объем ПЗУ, Гб	4
Интерфейсы:	
- RS-485	1
- USB-host	2
- Ethernet	2
Поддержка подключения крейтов расширения	по схемам «звезда» и «кольцо»
Входное напряжение постоянного тока, В:	
 номинальное значение 	24
 допустимый диапазон изменений 	от 18 до 36
Входной ток, А, не более	0,9 (при напряжении 24 В)
Защита от перенапряжения	Да
Защита от обратной полярности питающего напряжения	Да
Температура окружающего воздуха при эксплуатации, °С	от – 20 до + 60
Температура окружающего воздуха при хранении, °С	от – 30 до + 70
Размеры (ШхВхГ), мм	236x169x51,2
Вес, кг	2,4

Программное обеспечение модулей центрального процессора опционально поддерживает функцию WEB-визуализации. В этом случае к условному обозначению модуля добавляется буква (W), например, R400 CU 00 071 (W).

Основными компонентами модуля являются:

- СОМ-модуль;
- твердотельный накопитель;
- контроллеры сети Ethernet;
- элемент питания часов реального времени;

- коммуникационный порт RS-485;
- два коммуникационных порта Ethernet;
- два коммуникационных порта внутренней шины данных (IN и OUT);
- два порта USB-host.

СОМ-модуль представляет собой одноплатный компьютер. Он устанавливается на плату центрального процессора, при этом полностью закрывается радиатором, что обеспечивает, помимо теплоотведения, дополнительную защиту от механических повреждений и электромагнитных помех. СОМ-модуль подключается к плате центрального процессора с помощью 220-пинового разъема (стандарт СОМ Express), на который выведены следующие цифровые интерфейсы:

- PCIe;
- SATA;
- LVDS;
- USB;
- SMBus/I2C.

К шине PCIe подключаются контроллеры сети Ethernet, которые используются для организации внутренней шины данных (разъемы IN и OUT интерфейсной панели) и двух портов Ethernet 10BASE-T/100BASE-T/1000BASE-T (разъемы Port 1 и Port 2 интерфейсной панели).

Шина SATA используется для подключения твердотельного накопителя. Твердотельный накопитель предназначен для хранения файлов операционной системы центрального процессора и прикладной программы пользователя. Кроме того, пользователь может реализовать на нем хранение архивных баз прикладных задач.

Интерфейс LVDS используется для подключения экрана.

Посредством интерфейса SMBus/I2C к центральному процессору подключены емкостная сенсорная панель и пленочная клавиатура модуля.

Индикация

На лицевой панели в верхнем левом углу панели находится двухцветный светодиод, показывающий, как функционирует модуль (Рисунок 7).

Рисунок 7 - Индикатор функционирования модуля

Индикатор горит зеленым цветом при нормальном функционировании модуля и красным – при наличии какой-либо аппаратной или программной ошибки.

Работу с проектом на модуле, индикатор показывает следующим образом:

- выполнен старт проекта светодиод горит зеленым;
- выполнена остановка проекта светодиод не горит;
- извлечены модули ввода/вывода или отключили крейт светодиод горит красным;
- удалили проект светодиод моргает красным.

На задней панели модуля расположены следующие индикаторы (Рисунок 8):

- IN, OUT соответствующий индикатор мигает при наличии обмена через коммуникационные порты внутренней шины данных (IN и OUT);
- Port 1, Port 2 соответствующий индикатор мигает при наличии обмена через коммуникационные порты Ethernet;
- Port 3 Rx индикатор мигает при приеме данных через коммуникационный порт RS-485;
- Port 3 Тх индикатор мигает при передаче данных через коммуникационный порт RS-485;
- =24B индикатор горит при включенном питании модуля.

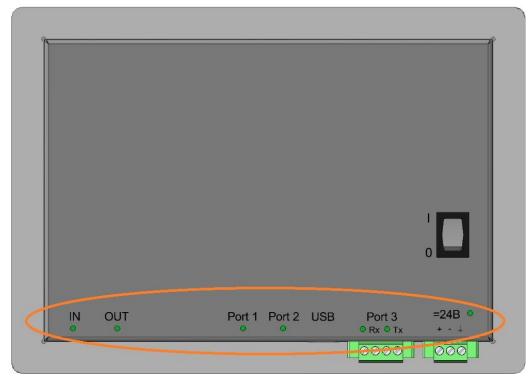


Рисунок 8 - Индикаторы питания и обмена данными модуля

Подключение внешних устройств

Два порта USB-host выведены на интерфейсную панель модуля в виде разъёмов USB А. Интерфейсная панель модуля представлена на рисунке 9.

Рисунок 9 - Интерфейсная панель модуля

Интерфейс USB также используется для подключения микросхемы связи, которая преобразует его в интерфейс RS-485. Последний, в свою очередь, выведен на интерфейсную панель в виде четырехпинового разъема (Port 3) (Рисунок 10).

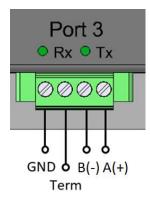


Рисунок 10 - Схема подключения порта RS-485

Подключение источника электропитания

Электропитание модуля центрального процессора осуществляется от сети напряжением 24 В постоянного тока. Для подключения источника питания используется трехпиновый разъем, расположенный на интерфейсной панели.

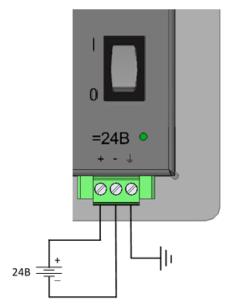


Рисунок 11 – Схема подключения источника питания

Включение модуля центрального процессора в работу осуществляется с помощью кнопки включения питания.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание контроллера заключается в профилактическом осмотре модулей, состояния разъемов.

Периодичность профилактических осмотров при техническом обслуживании - не реже одного раза в год. При осмотре контроллера производится:

- проверка отсутствия внешних повреждений, влияющих на функциональные или технические характеристики контроллера;
- проверка надежности контактов соединителей.

При необходимости винтовые зажимы подтягиваются, удаляется пыль методом продувки сжатым воздухом.

ПРИЛОЖЕНИЕ А

Перечень заказных позиций контроллера

Ниже приведены доступные для заказа компоненты контроллера REGUL R400.

Таблица А.1

Обозначение модуля	Наименование модуля
R400 CU 00 071	Модуль центрального процессора,
	Intel Atom, 1x4Gb SSD, RS-485,
	2 x Ethernet RJ45, 2xUSB-host
R400 CU 00 071(W)	Модуль центрального процессора,
	Intel Atom, 1x4Gb SSD, RS-485,
	2 x Ethernet RJ45, 2xUSB-host, поддержка WEB-визуализации