
www.hilscher.com

netX Dual-Port Memory Interface Manual

netX Dual-Port Memory Interface
for netX based Products

Language: English

netX DPM Interface Manual Introduction • 2

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Rev Date Name Revisions

0 2006-03-03 rm, tk Created

1 2006-06-13 tk First Release

2 2006-07-28 tk Changes After Review

3 2006-08-04 tk Section 4.8 - Changed Confirmation Packet Structure

4 2007-03-26 rm, tk Section 4 Rearranged
Sections 4.7.1 / 4.10 / 4.11 Rewritten and Extended
Added new Flags to CommCOS and AppCOS Register (0 and 3.2.5)
New Sections 2.3.3, 2.3.4, 2.5, 4.1.2, 4.1.3, 5.2, 5.3 & 7

5 2007-05-29 tk
rm
hjh

New Sections 4.7.2.3, 4.7.2.4, 5.3, 4.16 and 4.17
Section 4.8 and 5.1: Version format rearranged; was: maj.min.rev.build
Added HSF_BOOTSTART to Host System Flags in Section 3.1.3.2;
Reset flag is now supported
Added License Flag Information in section 3.1.1
Section 4.10, 4.11, 4.12, 4.13, 4.14 reworked and extended
Device classes for all types of CIFX combined (section 3.1.1);
Communication and protocol class moved from common status block
(section 3.2.5) into channel information block (section 3.1.2)
Protocol class changed and conformance class added
Added section 7 and removed sections (Status & Error Codes) from
packet definitions
Changed RCX_S_ status codes to RCX_E_ error codes
Section Security Memory Read and Write packets removed
Device Class in appendix A added

6 2008-09-16 tk Added Clarification to Section 2.3
Added Clarification to Hardware Assembly Options in Section 3.1.1
Added Clarification to Section 3.1.2 Communication Class, Protocol Class
New Packet to Read Hardware Information in Section 4.7.2
New Sections 4.9.3, 4.15.2 - 4.15.5, 4.18 and 4.19

7 2008-12-03 tk New Packet to Force LED to Flash in Section 5.4.3
Added System Reset Flowchart
Removed Section 5.4 and LEDs from Structure in Section 3.1.6
Added Performance Values in Structure in Section 3.1.6
New Sections 4.20 and 4.21

8 2009-05-20 tk New Packet to Read Perfomance Data (Section 4.22)
Changed RCX_CHANNEL_IDENTIFY_REQ/_CNF to
RCX_FIRMWARE_IDENTIFY_REQ/_CNF in Section 4.8
Removed Table for Handshake in 16 Bit Mode from Section 3.3
Added HW Assembly Options for CompoNet
Added new Device Class NPLC-C100, NPLC-M100, netTAP 50
Added new Protocol Class: PLC (CoDeSys, ProConOS, IBH S7,
ISaGRAF), Visualization (QVis), Programmable Gateway & Serial
Revised Structure Definition in Section 3.3

netX DPM Interface Manual Introduction • 3

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

All rights reserved. No part of this publication may be reproduced.

The author makes no warranty of any kind with regard to this material, including but not limited to the
implied warranties of merchantability and fitness for a particular purpose. The author assumes also no
responsibility for any errors that may appear in this document.

Although this software has been developed with great care and was intensively tested, Hilscher
Gesellschaft für Systemautomation mbH cannot guarantee the suitability of this software for any
purpose not confirmed by us in written form.

Guarantee claims shall be limited to the right to require rectification. Liability for any damages which
may have arisen from the use of this software or its documentation shall be limited to cases of intent.
We reserve the right to modify our products and their specifications at any time in as far as this
contribute to technical progress. The version of the manual supplied with the software applies.

netX DPM Interface Manual Introduction • 4

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Table of Content

1 INTRODUCTION ..11
1.1 Terms, Abbreviations and Definitions..11
1.2 Limitations ...13

2 DUAL-PORT MEMORY STRUCTURE ...14
2.1 Boot Procedure..14
2.2 netX Firmware ...15
2.3 Dual-Port Memory Layout..17

2.3.1 Default Dual-Port Memory Layout..18
2.3.2 Dual-Port Memory Channels..19

2.4 Data Transfer Mechanism ...22
2.4.1 Command and Acknowledge ...22
2.4.2 Handshake Registers and Flags..23
2.4.3 Change of State Mechanism..23
2.4.4 Enable Flag Mechanism...23
2.4.5 Mailbox ...24
2.4.6 Input and Output Data Blocks ..25
2.4.7 Control Block..25
2.4.8 Status Block ...25

2.5 Accessing a Protocol Stack ...26

3 DUAL-PORT MEMORY DEFINITIONS ..27
3.1 System Channel ..27

3.1.1 System Information Block ..28
3.1.2 Channel Information Block ...35
3.1.3 System Handshake Register..41
3.1.4 System Handshake Block ..43
3.1.5 System Control Block...43
3.1.6 System Status Block ..44
3.1.7 System Mailbox..46

3.2 Communication Channel ...47
3.2.1 Default Memory Layout ..47
3.2.2 Channel Handshake Register ..48
3.2.3 Handshake Block ...51
3.2.4 Control Block..52
3.2.5 Common Status Block..54
3.2.6 Extended Status Block (Protocol Specific)...60
3.2.7 Channel Mailbox ..60
3.2.8 High Priority Output / Input Data Image ...62
3.2.9 Reserved Area ...62
3.2.10 Process Data Output/Input Image..63

3.3 Handshake Channel ..64

netX DPM Interface Manual Introduction • 5

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.4 Application Channel...65

4 DUAL-PORT MEMORY FUNCTION...66
4.1 Non-Cyclic Data Exchange..66

4.1.1 Messages or Packets...67
4.1.2 About System and Channel Mailbox..69
4.1.3 Using ulSrc and ulSrcId..70
4.1.4 How to Route rcX Packets ...71
4.1.5 Client/Server Mechanism...72
4.1.6 Transferring Fragmented Packets ...74

4.2 Input / Output Data Image ...78
4.2.1 Process Data Transfer Synchronization ..78
4.2.2 Process Data Handshake Modes ..78

4.3 Input/Output Data Status ...84
4.3.1 About Input/Output Data Status ...84
4.3.2 Provider State ..85
4.3.3 Consumer State ...85

4.4 Start / Stop Communication...86
4.4.1 Controlled or Automatic Start ...86
4.4.2 Start / Stop Communication through Dual-Port Memory86
4.4.3 Start / Stop Communication through Packets ..87

4.5 Lock Configuration...89
4.5.1 Lock Configuration through Dual-Port Memory..89
4.5.2 Lock Configuration through Packets ..89

4.6 Determining DPM Layout ..92
4.6.1 Default Memory Layout ..92
4.6.2 Obtaining Logical Layout..92
4.6.3 Mechanism...93

4.7 Identifying netX Hardware ...99
4.7.1 Security Memory ..99
4.7.2 Identifying netX Hardware through Packets...106

4.8 Identifying Channel Firmware..114
4.8.1 Identifying Channel Firmware Request..114
4.8.2 Identifying Channel Firmware Confirmation...115

4.9 Reset Command..117
4.9.1 System Reset vs. Channel Initialization...117
4.9.2 Resetting netX through Dual-Port Memory ..117
4.9.3 System Reset through Packets..120

4.10 Downloading Files to netX...124
4.10.1 File Download ..125
4.10.2 File Data Download..129
4.10.3 Abort File Download...132

4.11 Uploading Files from netX ...134
4.11.1 File Upload ...135
4.11.2 File Data Upload ..139
4.11.3 File Upload Abort ...141

netX DPM Interface Manual Introduction • 6

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.11.4 Creating a CRC32 Checksum..143
4.12 Read MD5 File Checksum...144

4.12.1 MD5 File Checksum Request ..144
4.12.2 MD5 File Checksum Confirmation ...145

4.13 Delete a File ..147
4.13.1 File Delete Request..147
4.13.2 File Delete Confirmation...148

4.14 List Directories and Files from File System ...149
4.14.1 Directory List Request..149
4.14.2 Directory List Confirmation...151

4.15 Host / Device Watchdog ..153
4.15.1 Function..153
4.15.2 Get Watchdog Time Request...154
4.15.3 Get Watchdog Time Confirmation..155
4.15.4 Set Watchdog Time Request ...156
4.15.5 Set Watchdog Time Confirmation ..157

4.16 Set MAC Address ..158
4.16.1 Set MAC Address Request ..158
4.16.2 Set MAC Address Confirmation ...159

4.17 Start Firmware on netX..160
4.17.1 Start Firmware Request ...160
4.17.2 Start Firmware Confirmation ..161

4.18 Register / Unregister an Application ..162
4.18.1 Register Application Request...162
4.18.2 Register Application Confirmation..163
4.18.3 Unregister Application Request ...164
4.18.4 Unregister Application Confirmation ..165

4.19 Delete Configuration from the System...166
4.19.1 Delete Configuration Request ..166
4.19.2 Delete Configuration Confirmation...167

4.20 System Channel Information Blocks..168
4.20.1 Read System Information Block...168
4.20.2 Read Channel Information Block ...170
4.20.3 Read System Control Block ...172
4.20.4 Read System Status Block...174

4.21 Communication Channel Information Blocks...176
4.21.1 Read Communication Control Block ..176
4.21.2 Read Common Status Block ..179
4.21.3 Read Extended Status Block ...181

4.22 Read Performance Data through Packets...183
4.22.1 Read Performance Data Request..183
4.22.2 Read Performance Data Confirmation...184

5 DIAGNOSTIC..186
5.1 Versioning..186
5.2 Network Connection State...187

netX DPM Interface Manual Introduction • 7

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.2.1 Mechanism...187
5.2.2 Obtain List of Slave Handles..188
5.2.3 Obtain Slave Connection Information ..190

5.3 Obtain I/O Data Size Information...193
5.3.1 Get DPM I/O Information Request ...193
5.3.2 Get DPM I/O Information Confirmation ..194

5.4 LEDs..197
5.4.1 System LED ...197
5.4.2 Communication Channel LEDs..197
5.4.3 Force LED Flashing ...198

6 CONFIGURATION..200
6.1 SYCON.net..200
6.2 FDT / DTM Concept ..200
6.3 Online Data Manager ODM...201
6.4 Other Configuration Tools ...202

6.4.1 Configuration without SYCON.net ...202
6.5 Address Table ...202

7 STATUS & ERROR CODES...203

8 APPENDIX..207

9 GLOSSARY ..209

10 CONTACT ..211

netX DPM Interface Manual Introduction • 8

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

List of Figures
Figure 1 - netX Firmware Block Diagram (Example) 15
Figure 2 - Block Diagram Default Dual-Port Memory Layout 17
Figure 3 - Lock Configuration (Example Using Enable Flag) 24
Figure 4 - Accessing a Protocol Stack 26
Figure 5 - Use of ulDest in Channel and System Mailbox 69
Figure 6 - Using ulSrc and ulSrcId 70
Figure 7 - Transition Chart Application as Client 72
Figure 8 - Transition Chart Application as Server 73
Figure 9 - Step-by-Step: Not Buffered, Uncontrolled Mode 79
Figure 10 - Time Related: Not Buffered, Uncontrolled Mode 80
Figure 11 - Step 1: Buffered, Controlled Mode 81
Figure 12 - Step 2: Buffered, Controlled Mode 81
Figure 13 - Step 3: Buffered, Controlled Mode 82
Figure 14 - Step 4: Buffered, Controlled Mode 82
Figure 15 - Time Related: Buffered, Controlled, Output Data 82
Figure 16 - Time Related: Buffered, Controlled, Input Data 83
Figure 17 - System Reset Flowchart 118
Figure 18 - Flowchart Download 125
Figure 19 - Flowchart upload 135

List of Tables
Table 1 - Terms, Abbreviations and Definitions 12
Table 2 - Communication Channel (Default Memory Map) 18
Table 3 - Memory Blocks 19
Table 4 - Memory Configuration 19
Table 5 - System Channel 20
Table 6 - Command and Acknowledge 22
Table 7 - System Channel 27
Table 8 - System Information Block 28
Table 9 - Channel Information Block 36
Table 10 - netX System Flags 41
Table 11 - netX System Flags 42
Table 12 -System Handshake Block 43
Table 13 - System Control Block 43
Table 14 - System Status Block 44
Table 15 - System Mailbox 46
Table 16 - Default Communication Channel Layout 47
Table 17 - netX Communication Channel Flags 48
Table 18 - Communication Channel Flags 50
Table 19 - Communication Handshake Block 51
Table 20 - Communication Control Block 52
Table 21 - Application Change of State 52
Table 22 - Common Status Block 54
Table 23 - Communication State of Change 55
Table 24 - Master Status 58
Table 25 - Extended Status Block 60
Table 26 - Channel Mailboxes 61
Table 27 - High Priority Output / Input Data Image 62
Table 28 - Reserved Area 62

netX DPM Interface Manual Introduction • 9

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Table 29 - Output/Input Data Image 63
Table 30 - Handshake Channel 64
Table 31 - Packet Structure 67
Table 32 - Use of ulDest 70
Table 33 - Download Request (CMD = download command; F = First; M = Middle; L = Last) 75
Table 34 - Upload Request (CMD = upload command; N = None; F = First; M = Middle; L = Last) 75
Table 35 - Process Data Handshake Modes 78
Table 36 - Input Data Status 85
Table 37 - Output Data Status 85
Table 38 - Block Definition (Example for Communication Channel 1) 93
Table 39 - Hardware Configuration (Zone 1) 104
Table 40 - PCI System and OS Setting (Zone 2) 104
Table 41 - User Specific Zone (Zone 3) 105
Table 42 - SYS LED 197
Table 43 – Device Class 208
Table 44 - Glossary 210

netX DPM Interface Manual Introduction • 10

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Page left blank

netX DPM Interface Manual Introduction • 11

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

1 Introduction
This manual describes the user interface respectively the dual-port memory for netX-based products
manufactured by Hilscher.

The netX dual-port memory is the interface between a host in a dual processor system (e.g. PC or
microcontroller) and the netX chip. It is a shared memory area, which is accessible from the netX side
and the host side and used to exchange process and diagnostic data between both systems.

The netX firmware determines the dual-port memory layout in size and content. It offers 8 variable
memory areas or channels, which create the dual-port memory layout. The flexible memory structure
provides access to the netX chip with its integrated network/fieldbus controller. The content and layout
of the individual memory channels depend on the communication protocol running on the netX chip;
only the system channel and the handshake channel have a fixed structure and location. This area is
used to obtain information regarding type, offset and length of the variable areas.

The system channel holds a system register area. This area contains netX control registers and allows
access to chip specific functions. The control area is not always necessary; if it is present depends on
the hardware configuration of the netX chip and the firmware functions.

1.1 Terms, Abbreviations and Definitions

Term Description

ACK Acknowledge

ASCII American Standard Code of Information Interchange

Boolean Bit Data Type (TRUE / FALSE)

CMD Command

COS Change of State

DMA Direct Memory Access

DPM Dual-Port Memory

DRAM Dynamic Random Access Memory

DWORD Double Word, 4 Bytes, 32 Bit Entity

EC1 80186 based Micro Controller

EEPROM Electrically Erasable Programmable Read Only Memory

FW Firmware

FIFO "First in, first out", Storage Mechanism

GPIO General Purpose Input / Output Pins

Hz Hertz (1 per Second)

I²C Inter-Integrated Circuit

INT8 Signed Integer 8 Bit Entity (Byte)

INT16 Signed Integer 16 Bit Entity (Word)

INT32 Signed Integer 32 Bit Entity (Double Word)

IO Input / Output Data

LED Light Emitting Diode

LSB Least Significant Bit or Byte

MBX Mailbox

netX DPM Interface Manual Introduction • 12

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

MMC Multimedia Card

ms Milliseconds, 1/1000 Second

MSB Most Significant Bit or Byte

OS Operating System

PCI Peripheral Component Interconnect

PLC Programmable Logic Controller

PIO Programmable Input/Output Pins

RAM Random Access Memory

RCS Real Time Operating System on AMD and EC-1 based processor types

rcX Real Time Operating System on netX

SRAM Static Random Access Memory

TBD To Be Determined

UART Universal Asynchronous Receiver Transmitter

UINT8 Unsigned Integer 8 Bit Entity (Byte)

UINT16 Unsigned Integer 16 Bit Entity (Word)

UINT32 Unsigned Integer 32 Bit Entity (Double Word)

USB Universal Serial Bus

WORD 2 Bytes, 16 Bit Entity

xC Communications Channel on the netX Chip (short form)

xPEC, xMAC Communications Channel on the netX Chip

Table 1 - Terms, Abbreviations and Definitions

All variables, parameters and data used in this manual have the LSB/MSB (“Intel”) data
representation.

The terms Host, Host System, Application, Host Application and Driver are used interchangeably to
identify a process interfacing the netX via its dual-port memory in a dual-processor system.

Windows® 2000/Windows® XP are registered trademarks of Microsoft Corporation.

netX DPM Interface Manual Introduction • 13

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

1.2 Limitations
The dual-port memory layout of netX based products is not compatible to AMD or EC1 based
products. The dual-port memory and its structure and definitions apply for netX products only.

The netX dual-port memory interface manual makes general definitions for netX based products. The
individual implementation of a protocol stack / firmware may support only a subset of the structures
and functions from this document.

Structures and functions described in this document apply only to hardware from 3rd party vendors
insofar as original Hilscher firmware is concerned. Therefore, whenever the term "netX firmware" is
used throughout this manual, it refers to ready-made firmware provided by Hilscher. Although 3rd
party vendors are free to implement the same structures and functions in their product, no guarantee
for compatibility of drivers etc. can be given.

netX DPM Interface Manual Dual-Port Memory Structure • 14

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2 Dual-Port Memory Structure

2.1 Boot Procedure
The netX supports different start-up scenarios depending on the hardware design. This chapter
describes the procedure for a design with a dual-port memory. In such an environment, the boot
procedure is divided into different steps as outlined below.

Step 1: After Power-On Reset

A ROM loader is always present in the netX. After power-on reset, the ROM loader is started. Its main
task is to initialize internal netX controller and its components like optional non-volatile boot devices
such as serial, parallel Flash etc. It also executes software module that may reside in the netX chip
(see also 2nd stage loader below). If none of the boot devices includes an executable software
module, a basic dual-port memory is being created.

Step 2: Download and Start the 2nd Stage Loader

The 2nd stage loader is a software module, which creates a so-called "system device" or "system
channel" in the dual-port memory area. After starting the 2nd stage loader, the system device creates
a mailbox system which can be accessed by the host system. Downloading the 2nd stage loader to
the netX is carried out by copying the loader software module into the dual-port memory and signaling
the netX to restart. The 2nd stage loader has to be downloaded again after power-on reset. If the
target hardware supports non-volatile boot devices, downloading the 2nd stage loader and firmware is
not necessary after power-on reset, because the ROM loader will find either the 2nd stage loader or
an executable firmware during step 1.

Step 3: Download and Start a Firmware

A firmware is a software module that opens a so-called "channel" in the dual-port memory area. The
firmware can be a fieldbus or Ethernet stack or any user application. The download is carried out by
the user application via the system device mailboxes. When the download has finished, the netX
operating system starts the firmware automatically. The firmware then creates mailboxes and
informational areas in the dual-port memory that allows communicating to the firmware directly. If the
target hardware does not support non-volatile boot devices, step 2 and step 3 must be always
processed after each power-on reset.

NOTE The ROM loader from step 1 is a pure hardware function of the netX chip and is executed
automatically, while step 2 and 3 are software driven and depend on the target hardware. If
the target hardware supports non-volatile boot devices, downloading the 2nd stage loader
and firmware is not necessary after power-on reset, because the ROM loader will find either
the 2nd stage loader or an executable firmware during step 1. Without a non-volatile boot
device, step 2 and step 3 must be always processed after each power-on reset.

netX DPM Interface Manual Dual-Port Memory Structure • 15

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2.2 netX Firmware
This section gives an overview of structure and function of the dual-port memory. The diagram below
is an example of how the netX firmware may be organized. The firmware in the diagram is comprised
of the system and handshake channel, two netX communication channels and an application channel.
A communication channel is a protocol stack like PROFINET or DeviceNet. In the example, one of the
protocol stacks uses two xMAC/xPEC ports (xC ports). A netX can have different independently
operating protocol stacks or user applications, which can be executed concurrently in the context of
the rcX operating system. Each of the stacks or user applications consists of one or more tasks.
Typically, the AP Task (Application Task) in a protocol stack or user applications interfaces to the dual-
port memory.

netX Firmware

Dual-Port Memory

System Handshake

Application

Task R

Task S

Task T

Task O

Task P

Task Q

xC
Port

xC
Port

xC
Port

To Networks

rcX Operating System

System
Channel

Handshake
Channel

netX Channel
Protocol Stack

netX Channel
Protocol Stack

Application
Channel

Figure 1 - netX Firmware Block Diagram (Example)

 Host
System with CPU that communicates over the dual-port memory with the netX

 netX
high integrated network controller with ARM CPU, dual-port memory and integrated
communication controllers

 Host Application
program that runs on the host controller, typically a PLC program

 netX Application
program which runs on netX, typically a protocol stack

 Dual-Port Memory
interface to the host application in a dual processor system

netX DPM Interface Manual Dual-Port Memory Structure • 16

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 Communication Channel
area of the dual-port memory that holds all data structures used to provide communication
between host and netX application, typically a communication channel is assigned to one protocol
stack

 Mailbox
part of a communication channel to exchange non-cyclic data using handshake cells for
synchronization

 Area
process data image or other data structures of a communication channel using handshake cells
for synchronization

 Port
serial interface to the network, typically a netX protocol stack that handles one port or, in case of
Ethernet with integrated hub / switch functionality, two ports

netX DPM Interface Manual Dual-Port Memory Structure • 17

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2.3 Dual-Port Memory Layout
The block diagram below gives an overview of how the netX protocol stacks communicate over certain
areas of the dual-port memory, called channels, with the host application. For the default Layout, each
of the channels has a fixed length. The system channel and the handshake channel have a fixed
length, too. The diagram below shows the default dual-port memory layout for channel 1.

Application
Channel 0

System
Information Block

Communication
Channel 3

Communication
Channel 2

Communication
Channel 0

Handshake Ch.
System
Channel

Channel
Information Block

System Status
Block

System
Send Mailbox

Application
Channel 1

0x0000

0x0200

0x0300

0x4000

0x0000

0x0030

0x00B0

0x0100

0x0200

Control Block

Common
Status Block

Send
Mailbox

0x0300

0x0310

0x1180

0x0500

0x0B40

0x0350

Receive
Mailbox

Output Data
Area 1

(high priority)

Input Data
Area 1

(high priority)

Reserved

Output Data
Area 0

Input Data
Area 0

0x11C0

0x1200

0x1300

0x2980

System
Receive Mailbox

0x0180

Reserved

0x00C0

Reserved

Extended
Status Block

0x4000

Handshake Channel 0

Reserved

Handshake Channel 1
Handshake Channel 2
Handshake Channel 3
Handshake Channel 4
Handshake Channel 5
Handshake Channel 6
Handshake Channel 7

0x0300

0x0200

Communication
Chanel 1

0x0308

0x0204
0x0208
0x020C

0x0214
0x0218

0x0210

0x021C
0x0220

max.
0x10000

0x00B8 System Control Block

Figure 2 - Block Diagram Default Dual-Port Memory Layout

netX DPM Interface Manual Dual-Port Memory Structure • 18

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2.3.1 Default Dual-Port Memory Layout

The netX features a compact layout for small host systems. With the preceding system memory area
and handshake channel (see below), its total size is 16 KByte and starts at offset address 0x0300. It
supports only one communication channel. The protocol stack will set the default memory map flag in
the ulSystemCOS variable in system status block on page 44 if the default memory layout is used. If
the default memory map flag is cleared, the layout of the dual-port memory is variable in its size and
location.

Default Dual-Port Memory Layout (Communication Channel)

Block Name Offset Size Description

Reserved 0x0300 8 Bytes Reserved for Future Use, Set to Zero

Control 0x0308 8 Bytes Control (see page 52 for details)

Common Status 0x0310 64 Bytes
Status Information Regarding the Protocol Stack
(see page 54 for details)

Extended Status 0x0350 432 Bytes
Network Specific Information
(see page 60 for details)

Send Mailbox 0x0500 1600 Bytes
Send Mailbox Structure for Non-Cyclic Data Transfer
and Diagnostic (see page 60 for details)

Receive Mailbox 0x0B40 1600 Bytes
Receive Mailbox Structure for Non-Cyclic Data Transfer
and Diagnostic (see page 60 for details)

Output Data Image 1 0x1180 64 Bytes
High Priority Cyclic Output Data Image
(not yet supported)

Input Data Image 1 0x11C0 64 Bytes
High Priority Cyclic Input Data Image
(not yet supported)

Reserved 0x1200 256 Bytes Reserved for Future Use, Set to Zero

Output Data Image 0 0x1300 5760 Bytes
Cyclic Output Data Image for Process Data
(see page 63 for details)

Input Data Image 0 0x2980 5760 Bytes
Cyclic Input Data Image for Process Data
(see page 63 for details)

Table 2 - Communication Channel (Default Memory Map)

netX DPM Interface Manual Dual-Port Memory Structure • 19

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2.3.2 Dual-Port Memory Channels

Typical fieldbus configurations have to one or more xMAC/xPEC ports assigned to them. In addition,
the netX dual-port memory concept supports two rcX applications that are not working with
xMAC/xPEC ports at all. All of theses applications use memory areas, so called channels, which are
mapped into the dual-port memory.

Count Channel used for Description Default Size

1 SYSTEM Access to the netX Operating System 512 Bytes

1 HANDSHAKE Handshake Flags for Channels 256 Bytes

4 COMMUNICATION Communication Channel Assigned to a Protocol
Stack Using One or More Ports (xMAC/xPEC) 14848 Bytes

2 APPLICATION Application Channel Using Memory Area for User
Tasks Running on the netX Chip Variable (max 4864)

Table 3 - Memory Blocks

The system channel is always present. It provides information about the structure of the dual-port
memory and allows a basic communication via system mailboxes.

The netX firmware is variable in regards of its actual memory layout. Information about the location
and size of a certain channels can be obtained via the system mailboxes via messages. The size of a
channel is always a multiple of 256 bytes.

Memory Configuration

Channel Size Description

System Channel 512 Bytes System Information, Status and Control Blocks,
Mailboxes

Handshake Channel 256 Bytes Handshake Flags for Host and netX, Change of State
Mechanism (COS)

Communication Channel 0 Variable
m • 256 Bytes

I/O Data, None Cyclic Data Exchange, Diagnostic Data
of the Protocol stack Running on Channel 0

Communication Channel 1 Variable
n • 256 Bytes

I/O Data, None Cyclic Data Exchange, Diagnostic Data
of the Protocol stack Running on Channel 1

Communication Channel 2 Variable
p • 256 Bytes

I/O Data, None Cyclic Data Exchange, Diagnostic Data
of the Protocol stack Running on Channel 2

Communication Channel 3 Variable
q • 256 Bytes

I/O Data, None Cyclic Data Exchange, Diagnostic Data
of the Protocol stack Running on Channel 3

Application Channel 0 Variable
r • 256 Bytes Custom Specific (Application)

Application Channel 1 Variable
s • 256 Bytes Custom Specific (Application)

Table 4 - Memory Configuration

The application/driver obtains information regarding the actual structure of the dual-port memory and
configures itself accordingly.

netX DPM Interface Manual Dual-Port Memory Structure • 20

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2.3.2.1 System Channel

From a driver/application point of view, the system channel is the most important location in the dual-
port memory. It is always present, even if no application firmware is loaded to the netX. It is the
"window" to the rcX operating system or netX boot loader respectively, if not firmware is loaded.

The system channel is located at the beginning of the dual-port memory (starting at offset 0x0000).
The first 256 byte page of this channel has a fixed structure. The following 256 byte page is reserved
for the system mailboxes. By default the mailbox structure is 128 bytes in size for the send mailbox
and 128 bytes for the receive mailbox.

System Channel

Block Name Size Description

System Information Block 48 Bytes System Information Area

Channel Information Block 128 Bytes
Contains Configuration Information About Available
Communication and Application Channels and their Data
Blocks

Reserved System
Handshake Block 8 Bytes Reserved Handshake Block for Handshake Cells

System Control Block 8 Bytes System Control and Commands

System Status Block 64 Bytes System Status Information

System Mailboxes 256 Bytes System Packet Mailbox Area (Always Located at the
End of the System Block, see Table 15)

Table 5 - System Channel

2.3.2.2 Communication Channels

Each of the communication channels can have the following elements:
 Output Data Image

is used to transfer cyclic process data to the network (normal or high-priority)

 Input Data Image
is used to transfer cyclic process data from the network (normal or high-priority)

 Send Mailbox
is used to transfer non-cyclic data to the netX

 Receive Mailbox
is used to transfer non-cyclic data from the netX

 Control Block
allows the host system to control certain channel functions

 Common Status Block
holds information common to all protocol stacks

 Extended Status Block
holds protocol specific network status information

A communication channel follows the preceding channel without gaps. Depending on the
implementation, sub areas (or blocks) may or may not be present for a communication channel. This is
contrary to the default memory layout as outlined on page 18, where all of the above blocks are
mandatory. In the variable layout, the Control and Common Status blocks are mandatory and always
present. Structure and the size of these blocks are fixed. The Extended Status block is optional and
may or may not be present. The Send and Receive Mailbox are mandatory and always present, but

netX DPM Interface Manual Dual-Port Memory Structure • 21

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

variable in its size. Depending on the implementation, Input and Output Data Images may or may not
be present. They have a variable size.

2.3.2.3 Handshake Channel

The handshake channel brings all handshake register from all channels together in one location. This
is the preferred approach for PC based solutions. The handshake bits allow synchronizing data
transfer between the host system and the netX. The channel has a size of 256 bytes and starts always
at address 0x0200. This channel has a fixed structure.

There are two types of handshake cells:
 System Handshake Cells

relates to the "System Device" that are used by the host application to execute netX-wide
commands like reset, etc.

 Communication Handshake Cells
are used to synchronize cyclic data transfer via IO images or non-cyclic data over mailboxes in the
communication channels as well as indicating status changes to the host system

2.3.2.4 Communication Channel

The communication channel area in the dual-port memory is used by fieldbus stacks. Those stacks
use this area to exchange their cyclic process data with the host application and

If the default memory layout is used, the protocol stack will set the default memory map flag in the
ulSystemCOS variable in system status block. See page 18 for the default dual-port memory layout.
When the variable approach of configuring the dual-port memory is used, the rcX operating system
calculates the layout of the channel and its blocks based on the configuration database. rcX creates a
memory map of the smallest possible size. Individual channel areas follow the previous area without
gaps.

Today all functions to obtain the memory map, as described on page 92, are in place. This
functionality does not change for an application, independently whether it uses the default memory
map as outlined above or it is configurable dynamically in a next step.

2.3.2.5 Application Channels

Depending on the implementation, application channels may or may not be present in the memory
map. An OEM may choose to run an additional preprocessing application on the netX rather than on
the host system. That application can use an application channel for preprocessing data and
transferring the results. An example for such an application is a barcode scanner using solely the netX
chip.

netX DPM Interface Manual Dual-Port Memory Structure • 22

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2.4 Data Transfer Mechanism
All data in a channel is structured in blocks. According to their functions, these blocks use different
data transfer mechanisms. For example, data transfer through mailboxes uses a synchronized
handshake mechanism between host system and netX firmware. The same applies to process data
areas, when a buffered handshake mode is configured. Other blocks, like the status block, are read by
the host application and do not apply a synchronization mechanism. Types of blocks in the dual-port
memory are outlined below:

 Change of State
collection of flags, that initiate execution of certain commands or signal a change of state

 Mailbox
transfer non-cyclic messages or packages with a header for routing information

 Data Area
holds process image for cyclic process data or user defined data structures

 Control Block
is used to signal application related state to the netX firmware

 Status Block
holds information regarding the current network state

2.4.1 Command and Acknowledge

To ensure data consistency over a memory area (or block), the netX firmware features a pair of flags
called command and acknowledge flags. Engaging these flags gives access rights alternating to either
the user application or the netX firmware. If both application and netX firmware access the area at the
same time, it may cause loss of data or inconsistency.

The handshake cells are located in the handshake channel or at the beginning of a communication
channel (configurable). As a rule, if both flags have the same value (both set to true or both set to
false) the application has access rights to the memory area or sub-area. If both have a different value,
the netX firmware has access rights. The following table illustrates this mechanism.

Host CMD Flag ACK Flag netX

Host System Has Access 0 0 netX Has NO Access

Host System Has NO Access 0 1 netX Has Access

Host System Has NO Access 1 0 netX Has Access

Host System Has Access 1 1 netX Has NO Access

Table 6 - Command and Acknowledge

The command and acknowledge mechanism is used for the change of state function (see below),
process data images and mailboxes.

netX DPM Interface Manual Dual-Port Memory Structure • 23

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2.4.2 Handshake Registers and Flags

The netX firmware uses a handshake mechanism to synchronize data transfer between the network
and the host system. There is a pair of handshake flags for each process data and mailbox related
block (input / output or send / receive). The handshake flags are located in registers. Writing to these
registers triggers an interrupt to either the host system or the netX firmware.

The command-acknowledge mechanism as outlined on page 22 is used to share control over process
data image and mailboxes between host application and netX firmware. The mechanism works in
exactly the same way in both directions.

2.4.3 Change of State Mechanism

The netX firmware provides a mechanism to indicate a change of state from the netX to the host
application and vice versa. Every time a status change occurs, the new state is entered into the
corresponding register and then the Change of State Command flag is toggled. The other side then
has to toggle the Change of State Acknowledge flag back acknowledging the new state.

The Change of State (COS) registers are basically an extension to the handshake register (see
below). The more important (time critical) flags to control the channel protocol stack are located in the
handshake register, whereas less important (not time critical) flags are located in the Change of State
registers.

The command-acknowledge mechanism as outlined in section below is used to share control over the
Change of State (COS) register between host application and netX firmware. The mechanism works in
the same way in both directions.

2.4.4 Enable Flag Mechanism

The Enable flags in the Communication Change of State register (located in the Control Block, see
section below) and in the Application Change of State register (located in the Common Status Block,
see section below) are used to selectively set flags without interfering with other flags (or commands,
respectively) in the same register. The application has to enable these commands before it signals it to
the netX protocol stack. The netX protocol stack does not evaluate command or status flags without
the Enable flag set, if these flags are accompanied by an enable flag.

As an example, if host application whishes to lock the configuration settings of a communication
channel, the application sets the Lock Configuration flag and the Lock Configuration Enable flag in the
control block. Then the application toggles the Host Change of State Command flag in the host
handshake register, signaling to the channel firmware the new request. The firmware acknowledges
the new state by toggling the Host Change of State Acknowledge flag in the netX handshake register.
See flowchart below.

netX DPM Interface Manual Dual-Port Memory Structure • 24

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Lock Configuration

HCF_HOST_COS_CMD =
NCF_HOST_COS_ACK?

Go to ‚Lock
Configuration’ Finish Fault!

Try Again?

Set APP_COS_LOCK_CONFIG

Set APP_COS_LOCK_CONFIG_ENABLE

Toggle HCF_HOST_COS_CMD

COMM_COS_CONFIG_LOCKED Set?

Wait

Timeout?

Yes

No

Yes

No

Yes
No

No

Yes
No

Yes

HCF_HOST_COS_CMD =
NCF_HOST_COS_ACK?

Wait

Clear All ENABLE Flags in COS Register

Figure 3 - Lock Configuration (Example Using Enable Flag)

The application shall clear all Enable flags from previous operations first. In the chart, after toggling the
Host Change of State Command flag, the application waits for the netX protocol stack to acknowledge
the command. The chart shows a timeout approach, but this function is optional.

2.4.5 Mailbox

The mailbox system on netX provides a non-cyclic data transfer channel for fieldbus protocols.
Another use of the mailbox is allowing access to the firmware running on the netX chip itself for
diagnostic purposes. There is always a send and a receive mailbox. Send and receive mailboxes
utilize handshake bits to synchronize data packets into or out of the mailbox area. The handshake
registers have a pair of handshake bits, one for the send mailbox and one for the receive mailbox.

The netX operating system rcX uses only the system mailbox. The system mailbox, however, has a
mechanism to route packets to a communication channel. A channel mailbox passes packets to its
own protocol stack only.

netX DPM Interface Manual Dual-Port Memory Structure • 25

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2.4.6 Input and Output Data Blocks

These data blocks in the netX dual-port memory are used for cyclic process data. The input block
holds the process data image received from the network whereas the output block holds data sent
to the network.

Process data transfer through the data blocks can be synchronized by using a handshake mechanism
(configurable). If in uncontrolled mode, the protocol stack updates the process data in the input and
output data image in the dual-port memory for each valid bus cycle. No handshake bits are evaluated
and no buffers are used. The application can read or write process data at any given time without
obeying the synchronization mechanism otherwise carried out via handshake registers. This transfer
mechanism is the simplest method of transferring process data between the protocol stack and the
application. This mode can only guarantee data consistency over a byte.

For the controlled / buffered mode, the protocol stack updates the process data in the internal input
buffer for each valid bus cycle. Each IO block uses handshake bits for access synchronization. Input
and output data block handshake operates independently from each other. When the application
toggles the input handshake bit, the protocol stack copies the data from the internal buffer into the
input data image of the dual-port memory. Now the application can copy data from the dual-port
memory and then give control back to the protocol stack by toggling the appropriate input handshake
bit. When the application/driver toggles the output handshake bit, the protocol stack copies the data
from the output data image of the dual-port memory into the internal buffer. From there the data is
transferred to the network. The protocol stack toggles the handshake bits back, indicating to the
application that the transfer is finished and a new data exchange cycle may start. Using this
mechanism either the protocol stack or application/driver temporarily "owns" the input/output data area
and has exclusive write/read access to it. So this mode guarantees data consistency over both input
and output area.

2.4.7 Control Block

A control block is always present in both system and communication channel. In some respects,
control and status block are used together in order to exchange information between host application
and netX firmware. The control block is written by the application, whereas the application reads a
status block. Both control and status block have registers that use the Change of State mechanism
(see section below).

The following gives an example of the use of control and status block. The host application whishes to
lock the configuration settings of a communication channel to protect them against changes. The
application sets the Lock Configuration flag in the control block to the communication channel
firmware. As a result, the channel firmware sets the Configuration Locked flag in the status block (see
below), indicating that the current configuration settings cannot be deleted, altered, overwritten or
otherwise changed.

2.4.8 Status Block

A status block is present in both system and communication channel. It contains information about
network and task related issues. In some respects, status and control block are used together in order
to exchange information between host application and netX firmware. The application reads a status
block whereas the control block is written by the application. Both status and control block have
registers that use the Change of State mechanism (see section below).

netX DPM Interface Manual Dual-Port Memory Structure • 26

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

2.5 Accessing a Protocol Stack
This chapter explains the different possible ways to interface a protocol stack

1. by accessing the dual-port memory interface directly;

2. by accessing the dual-port memory interface virtually;

3. by programming the protocol stack.

The picture below visualizes these three different ways.

(Extended) Status Block Send Mailbox Receive Mailbox Output Data Image Input Data Image

Network Abstraction Layer

Fieldbus Task(s)

Network

Application Task

1

3

2

Figure 4 - Accessing a Protocol Stack

This document explains how to access the dual-port memory through alternative 1 (and 2, if the user
application is executed on the netX chip in the context of the rcX operating system and uses the virtual
DPM) in the above image. Alternative 3 is explained in the fieldbus specific documentation and is not
part of this document.

netX DPM Interface Manual Dual-Port Memory Definitions • 27

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3 Dual-Port Memory Definitions

3.1 System Channel
The system channel is the first of the channels in the dual-port memory. It holds information about the
system itself (netX, netX operating system) and provides a mailbox transfer mechanism for system
related messages or packets. The structure of the system channel is as outlined below.

System Channel

Offset Type Name Description

0x0000 Structure tSystemInfo
System Information Block
Identifies netX Dual-Port Memory
(see page 28)

0x0030 Structure tChannelInfo

Channel Information Block
Contains Configuration Information About
Available Communication and Application Channel
Blocks (see page 35)

0x00B0 Structure tReserved
Handshake Block
Handshake Block for Handshake Cells
(not used, set to zero)

0x00B8 Structure tSystemControl
System Control Block
System Control and Commands
(see page 43)

0x00C0 Structure tSystemStatus System Status Block
System Status Information (see page 44)

0x0100 Structure tSystemSendMailbox
tSystemRecvMailbox

System Mailboxes
System Send and Receive Packet Mailbox Area,
Always Located at the End of the System Block
(see page 46)

Table 7 - System Channel

System Channel Structure Reference
typedef struct NETX_SYSTEM_CHANNEL_Ttag
{
 NETX_SYSTEM_INFO_BLOCK_T tSystemInfo;
 NETX_SYSTEM_CHANNEL_INFO_BLOCK_T tChannelInfo;
 NETX_SYSTEM_HANDSHAKE_BLOCK_T tReserved;
 NETX_SYSTEM_CONTROL_BLOCK_T tSystemControl;
 NETX_SYSTEM_STATUS_BLOCK_T tSystemStatus;
 NETX_SYSTEM_SEND_MAILBOX_T tSystemSendMailbox;
 NETX_SYSTEM_RECV_MAILBOX_T tSystemRecvMailbox;
} NETX_SYSTEM_CHANNEL_T;

netX DPM Interface Manual Dual-Port Memory Definitions • 28

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.1.1 System Information Block

The first entry in the system information block helps to identify the netX dual-port memory itself. It
holds a cookie and length information as well as information regarding the firmware running on the
netX. Its structure is outlined below. This block can also be read using the mailbox interface (see page
67 for details).

System Information Block

Offset Type Name Description

0x0000 UINT8 abCookie[4]
Identification
netX Module / Chip Identification and Start of DPM
netX Cookie: 'netX' (ASCII Characters)

0x0004 UINT32 ulDpmTotalSize DPM Size
Size Of Entire DPM In Bytes (see page 29)

0x0008 UINT32 ulDeviceNumber Device Number
Device Number / Identification (see page 29)

0x000C UINT32 ulSerialNumber Serial Number
Serial Number (see page 29)

0x0010 UINT16 ausHwOptions[4] Hardware Options
Hardware Assembly Option (see page 29)

0x0018 UINT16 usManufacturer
Manufacturer
Manufacturer Code / Manufacturer Location
(see page 31)

0x001A UINT16 usProductionDate Production Date
Production Date (see page 31)

0x001C UINT32 ulLicenseFlags1 License Code
License Flags 1 (see page 32)

0x0020 UINT32 ulLicenseFlags2 License Code
License Flags 2 (see page 32)

0x0024 UINT16 usNetxLicenseID License Code
netX License Identification (see page 32)

0x0026 UINT16 usNetxLicenseFlags License Code
netX License Flags (see page 32)

0x0028 UINT16 usDeviceClass Device Class
netX Device Class (see page 33)

0x002A UINT8 bHwRevision Hardware Revision
Hardware Revision Index (see page 34)

0x002B UINT8 bHwCompatibility
Hardware Compatibility
Hardware Compatibility Index (not supported yet)
(see page 34)

0x002C
… 0x002F UINT16 ausReserved[2] Reserved

Set to Zero

Table 8 - System Information Block

netX DPM Interface Manual Dual-Port Memory Definitions • 29

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

System Information Block Structure Reference
typedef struct NETX_SYSTEM_INFO_BLOCK_Ttag
{
 UINT8 abCookie[4]; /* 'netX' Cookie */
 UINT32 ulDpmTotalSize; /* DPM Size (in bytes) */
 UINT32 ulDeviceNumber; /* Device Number */
 UINT32 ulSerialNumber; /* Serial Number */
 UINT16 ausHwOptions[4]; /* Hardware Options */
 UINT16 usManufacturer; /* Manufacturer */
 UINT16 usProductionDate; /* Production Date */
 UINT32 ulLicenseFlags1; /* License Flags 1 */
 UINT32 ulLicenseFlags2; /* License Flags 2 */
 UINT16 usNetxLicenseID; /* License ID */
 UINT16 usNetxLicenseFlags; /* License Flags */
 UINT16 usDeviceClass; /* Device Class */
 UINT8 bHwRevision; /* Hardware Revision */
 UINT8 bHwCompatibility; /* Hardware Compatibility */
 UINT16 ausReserved[2];
} NETX_SYSTEM_INFO_BLOCK_T;

netX Identification, netX Cookie

The netX cookie identifies the start of the dual-port memory. It has a length of 4 bytes and is always
present; it holds 'netX' as ASCII characters. If the dual-port memory could not be initialized properly,
the netX chip fills the entire area with 0x0BAD staring at address 0x0300.

 BAD MEMORY COOKIE #define RCX_SYS_BAD_MEMORY_COOKIE 0x0BAD

Dual-Port Memory Size

The size field holds the total size of the dual-port memory in bytes. The size information is needed
when the dual-port memory is accessed in ISA mode. In a PCI environment, however, the netX chip
maps always 64 KByte. If the default memory layout is used, the usable size 16 KByte (see page 47).

Device Number, Device Identification

This field holds a device identification or item number.

Example:
A value of 1.234.567.890 (= 0x499602D2) translates into a device number of "123.4567.890".

If the value is equal to zero, the device number is not set.

Serial Number

This field holds the serial number of the netX chip, respectively device. It is a 32-bit value. If the value
is equal to zero, the serial number is not set.

netX DPM Interface Manual Dual-Port Memory Definitions • 30

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Hardware Assembly Options (xC Port 0 … 3)

The hardware assembly options array allows determining the actual hardware configuration on the xC
ports. It defines the type of (physical) interface that connects to the netX periphery. Each array
element represents an xC port starting with port 0 for the first element.

The following assembly options are defined.

Value Definition / Description
0x0000 UNDEFINED

The xC port is marked UNDEFINED, if the hardware cannot be determined. This
might be the case, if no security memory is found or read access to the security
memory failed

0x0001 NOT AVAILABLE
The xC port is marked NOT AVAILABLE for xC2 and xC3 on netX 50

0x0003 USED
The xC port is marked USED if this port is occupied by a protocol stack. This xC
port cannot be used by other firmware modules

0x0010 SERIAL
The xC port is marked SERIAL if the protocol stack supports an asynchronous
serial data link protocol

0x0020 AS-INTERFACE
The xC port is marked AS-INTERFACE if the firmware supports the
Actuator/Sensor-Interface

0x0030 CAN
The xC port is marked CAN if the firmware supports communication according to
CAN (Controller Area Network) specification

0x0040 DEVICENET
The xC port is marked DEVICENET if the firmware supports communication
according to the DeviceNet specification

0x0050 PROFIBUS
The xC port is marked PROFIBUS if the firmware supports communication
according to the PROFIBUS specification

0x0070 CC-LINK
The xC port is marked CC-LINK if the firmware supports communication according
to the CC-Link specification

0x0080 ETHERNET (internal Phy)
The xC port is marked ETHERNET (internal Phy) if the firmware expects an
internal Phy to be used with this xC port

0x0081 ETHERNET (external Phy)
The xC port is marked ETHERNET (external Phy) if the firmware expects an
external Phy connected to this xC port

0x0090 SPI (Serial Peripheral Interface)
0x00A0 IO-LINK

The xC port is marked IO-LINK if the firmware supports communication according
to the IO-Link specification

0x00B0 COMPONET
The xC port is marked COMPONET if the firmware supports communication
according to the CompoNet specification

0xFFF4 I2C INTERFACE UNKNOWN
The xC port is marked I2C INTERFACE UNKNOWN if the physical interface cannot
be determined (e.g. option module is not connected)

0xFFF5 SSI INTERFACE
0xFFF6 SYNC INTERFACE
0xFFFA TOUCH SCREEN

netX DPM Interface Manual Dual-Port Memory Definitions • 31

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

0xFFFB I2C INTERFACE
The xC port is marked I2C INTERFACE if the protocol stack can obtain information
about the physical interface from an option module. This value, however, is never
shown in the hardware assembly option field. Either I2C INTERFACE UNKNOWN
(if not found) or the detected hardware assembly is displayed

0xFFFC I2C INTERFACE netTAP
The xC port is marked I2C INTERFACE netTAP for an option module on netTAP
hardware basis. This value, however, is never shown in the hardware assembly
option field

0xFFFD PROPRIETARY INTERFACE
0xFFFE NOT CONNECTED

The xC port is marked NOT CONNECTED if this port has no traces to a connector.
This xC port can only be used for chip-internal purposes

0xFFFF RESERVED, DO NOT USE
else Othere are reserved

Manufacturer

The manufacturer code / manufacturer location is one of the following.

 UNDEFINED #define RCX_MANUFACTURER_UNDEFINED 0x0000
The module has not been personalized yet.

 Hilscher Gesellschaft für Systemautomation mbH
 #define RCX_MANUFACTURER_HILSCHER_GMBH 0x0001

 Codes ranging from 1 to 255 are reserved for Hilscher Gesellschaft für Systemautomation mbH

Production Date

The production date entry is comprised of the calendar week and year (starting in 2000) when the
module was produced. Both, year and week are shown in hexadecimal notation. If the value is equal
to zero, the manufacturer date is not set.

High Byte Low Byte

 Production (Calendar) Week (Range: 01 to 52)

Production Year (Range: 00 to 255)

Example:
An usProductionDate of 0x062B indicates year 2006 and calendar week 43.

netX DPM Interface Manual Dual-Port Memory Definitions • 32

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

License Code

These fields contain licensing information that is available for the netX firmware and tools. All four
fields (License Flags 1, License Flags 2, netX License ID & netX License Flags) help identifying
available licenses. If the license information fields are equal to zero, a license or license code is not
set. The license information is read from the security memory during startup.

License Flags 1 are used to indicate the type of master protocols that are licensed. If a flag set, a
license is present. The number of master stacks that are licensed is indicated by bits 31 and 30 (see
below).

ulLicenseFlags1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 PROFIBUS Master

 CANopen Master

 DeviceNet Master

 AS-Interface Master

 PROFINET IO RT Controller

 EtherCAT Master

 EtherNet/IP Scanner

 SEROCS III Master

Reserved, do not use

ulLicenseFlags1 (continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 …

 Reserved, do not use

00 = Unlimited number of master licenses
01 = 1 master license
10 = 2 master licenses
11 = 3 master licenses

netX DPM Interface Manual Dual-Port Memory Definitions • 33

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

License Flags 2 are used for tool licenses, e. g. SYCON.net or OPC server (bits 1 and 0). If a flag is
set, a tool license is present.

ulLicenseFlags2
31 30 29 28 … 10 9 8 7 6 5 4 3 2 1 0

 SYCON.net

 OPC Server

 QVis
01 = minimum size
10 = standard size
11 = maximum size

 CoDeSys (Hilscher)
01 = minimum size
10 = standard size
11 = maximum size

 Driver / Operating System Licence (Host Application)

Reserved, do not use

netX License ID holds a customer identification number.

netX License Flags are resevered.

Device Class

This field identifies the hardware and helps selecting a suitable firmware file from the view of an
application when downloading a new firmware. The following hardware device classes are defined.

Value Definition / Description
0x0000 UNDEFINED
0x0001 UNCLASSIFIABLE
0x0002 NETX CHIP (netX 500)
0x0003 CIFX (all PCI types)
0x0004 COMX
0x0005 NETX EVALUATION BOARD
0x0006 NETDIMM
0x0007 NETX CHIP (netX 100)
0x0008 NETHMI
0x0009 Reserved
0x000A NETIO 50
0x000B NETIO 100
0x000C NETX CHIP (netX 50)
0x000D NETPAC (Gateway)
0x000E NETTAP 100 (Gateway)
0x000F NETSTICK
0x0010 NETANALYZER
0x0011 NETSWITCH
0x0012 NETLINK
0x0013 NETIC
0x0014 NPLC-C100

netX DPM Interface Manual Dual-Port Memory Definitions • 34

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

0x0015 NPLC-M100
0x0016 NETTAP 50 (Gateway)
0xFFFE OEM DEVICE
0x0017 … 0xFFFD,
0xFFFF

Othere are reserved

Hardware Revision

This field indicates the current hardware revision of a module. It starts with one and is incremented
with every significant hardware change. ASCII characters are used for the hardware revision, if the
Device Class is equal to NETX CHIP (see above, either netX 50, 100 or 500). In this case, the
hardware revision starts with 'A' (0x41, 65 respectively). All other devices use numbers.

Hardware Compatibility

The hardware compatibility index starts with zero and is incremented every time changes to the
hardware require incompatible changes to the firmware. The hardware compatibility is used by an
application before downloading a firmware file to match firmware and hardware. The application shall
refuse downloading an incompatible firmware file.

NOTE This hardware compatibility should not be confused with the firmware version number. The
firmware version number increases for every addition or bug fix. The hardware compatibility
is incremented only if a change makes firmware and hardware incompatible to each other
compared to the previous version.

netX DPM Interface Manual Dual-Port Memory Definitions • 35

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.1.2 Channel Information Block

The channel information block structure holds information about the channels that are mapped into the
dual-port memory. The system channel is always present. However, its structure and the structure of
the handshake channel are different to the following communication block descriptions. Each structure
is 16 bytes. This block can also be read using the mailbox interface (see page 66 for details).

Channel Information Block

Address Channel Area Structure

 Data Type Description

0x0030 UINT8 Channel Type = SYSTEM (see page 37)

 UINT8 Reserved (set to zero)

 UINT8 Size / Position of Handshake Cells

 UINT8 Total Number of Blocks

 UINT32 Size of Channel in Bytes

 UINT16 Size of Send and Receive Mailbox Added in Bytes

 UINT16 Mailbox Start Offset

… 0x003F

System

UINT8[4] 4 Byte Reserved (set to zero)

 Data Type Description

0x0040 UINT8 Channel Type = HANDSHAKE (see page 37)

 UINT8[3] 3 Byte Reserved (set to zero)

 UINT32 Channel Size in Bytes

… 0x004F

Handshake

UINT8[8] 8 Byte Reserved

 Data Type Description

0x0050 UINT8 Channel Type = COMMUNICATION (see page 37)

 UINT8 Channel ID, Channel Number

 UINT8 Size / Position of Handshake Cells

 UINT8 Total Number of Blocks in this Channel

 UINT32 Size of Channel In Bytes

 UINT16 Communication Class (Master, Slave...)

 UINT16 Protocol Class (PROFIBUS, PROFINET....)

 UINT16 Protocol Conformance Class (DPV1, DPV2...)

… 0x005F

Communication
Channel 0

UINT8[2] 2 Byte Reserved (set to zero)

0x0060
… 0x008F

Communication
Channel 1, 2 & 3 Structure Same as Communication Channel 0

continued next page

netX DPM Interface Manual Dual-Port Memory Definitions • 36

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 Data Type Description

0x0090 UINT8 Channel Type = APPLICATION (see page 37)

 UINT8 Channel ID, Channel Number

 UINT8 Size / Position of Handshake Cells

 UINT8 Total Number of Blocks in this Channel

 UINT32 Size of Channel in Bytes

 UINT16 Communication Class (Master, Slave...)

 UINT16 Protocol Class (PROFIBUS, PROFINET...)

 UINT16 Protocol Conformance Class (DPV1, DPV2...)

… 0x009F

Application
Channel 0

UINT8[2] 2 Byte Reserved (set to zero)

0x00A0
… 0x00AF

Application
Channel 1 Structure Same as Application Channel 0

Table 9 - Channel Information Block

System Channel Information Structure Reference
typedef struct NETX_SYSTEM_CHANNEL_INFO_Ttag
{
 UINT8 bChannelType;
 UINT8 bReserved;
 UINT8 bSizePositionOfHandshake;
 UINT8 bNumberOfBlocks;
 UINT32 ulSizeOfChannel;
 UINT16 usSizeOfMailbox;
 UINT16 usMailboxStartOffset;
 UINT8 abReserved[4];
} NETX_SYSTEM_CHANNEL_INFO_T;

Handshake Channel Information Structure Reference
typedef struct NETX_HANDSHAKE_CHANNEL_INFO_Ttag
{
 UINT8 bChannelType;
 UINT8 bReserved[3];
 UINT32 ulSizeOfChannel;
 UINT8 abReserved[8];
} NETX_HANDSHAKE_CHANNEL_INFO_T;

Communication Channel Information Structure Reference
typedef struct NETX_COMMUNICATION_CHANNEL_INFO_Ttag
{
 UINT8 bChannelType;
 UINT8 bChannelId;
 UINT8 bSizePositionOfHandshake;
 UINT8 bNumberOfBlocks;
 UINT32 ulSizeOfChannel;
 UINT16 usCommunicationClass;
 UINT16 usProtocolClass;
 UINT16 usConformanceClass;
 UINT16 usReserved;
} NETX_COMMUNICATION_CHANNEL_INFO_T;

netX DPM Interface Manual Dual-Port Memory Definitions • 37

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Application Channel Information Structure Reference
typedef struct NETX_APPLICATION_CHANNEL_INFO_Ttag
{
 UINT8 bChannelType;
 UINT8 bChannelId;
 UINT8 bSizePositionOfHandshake;
 UINT8 bNumberOfBlocks;
 UINT32 ulSizeOfChannel;
 UINT8 abUserDefined[8];
} NETX_APPLICATION_CHANNEL_INFO_T;

Channel Information Block Structure Reference
typedef struct NETX_CHANNEL_INFO_BLOCK_Ttag
{
 NETX_SYSTEM_CHANNEL_INFO_T tSystemChannel;
 NETX_HANDSHAKE_CHANNEL_INFO_T tHandshakeChannel;
 NETX_COMMUNICATION_CHANNEL_INFO_T tCommunicationChannel0;
 NETX_COMMUNICATION_CHANNEL_INFO_T tCommunicationChannel1;
 NETX_COMMUNICATION_CHANNEL_INFO_T tCommunicationChannel2;
 NETX_COMMUNICATION_CHANNEL_INFO_T tCommunicationChannel3;
 NETX_APPLICATION_CHANNEL_INFO_T tApplicationChannel0;
 NETX_APPLICATION_CHANNEL_INFO_T tApplicationChannel1;
} NETX_CHANNEL_INFO_BLOCK_T;

Channel Type

This field identifies the channel type of the corresponding memory location. The following channel
types are defined.

 UNDEFINED #define RCX_CHANNEL_TYPE_UNDEFINED 0x00

 NOT AVAILABLE #define RCX_CHANNEL_TYPE_NOT_AVAILABLE 0x01

 RESERVED #define RCX_CHANNEL_TYPE_RESERVED 0x02

 SYSTEM #define RCX_CHANNEL_TYPE_SYSTEM 0x03

 HANDSHAKE #define RCX_CHANNEL_TYPE_HANDSHAKE 0x04

 COMMUNICATION #define RCX_CHANNEL_TYPE_COMMUNICATION 0x05

 APPLICATION #define RCX_CHANNEL_TYPE_APPLICATION 0x06

 Reserved for future use 0x07 … 0x7F

 User defined 0x80 … 0xFF

Channel Identification (Communication and Application Channel Only)

This field is used to identify the communication or application channel. The value is unique in the
system and ranges from 0 to 255.

netX DPM Interface Manual Dual-Port Memory Definitions • 38

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Size / Position of Handshake Cells

This field identifies the position of the handshake cells and their size. The handshake cells may be
located at the beginning of the channel itself or in a separate handshake area. The size of the
handshake cells can be either 8 or 16 bit, if present at all. The size / position field is not supported yet.

Size
 SIZE MASK #define RCX_HANDSHAKE_SIZE_MASK 0x0F

 NOT AVAILABLE #define RCX_HANDSHAKE_SIZE_NOT_AVAILABLE 0x00

 8 BITS #define RCX_HANDSHAKE_SIZE_8_BITS 0x01

 16 BITS #define RCX_HANDSHAKE_SIZE_16_BITS 0x02

Position
 POSITION MASK #define RCX_HANDSHAKE_POSITION_MASK 0xF0

 BEGINNING OF CHANNEL #define RCX_HANDSHAKE_POSITION_BEGINNING 0x00

 IN HANDSHAKE CHANNEL #define RCX_HANDSHAKE_POSITION_CHANNEL 0x10

Total Number of Blocks

A channel comprises blocks, like IO data, mailboxes and status blocks. The field holds the number of
those blocks in this channel.

Size of Channel

This field contains the length of the entire channel itself in bytes.

Size of System Mailbox in Bytes (System Channel Only)

The mailbox size field holds the size of the system mailbox structure (send and receive mailbox
added). Its minimum size is 128 bytes. The structure includes two counters for enhanced mailbox
handling (see page 46 for details).

Mailbox Start-Offset (System Block Only)

The start-offset field holds the location of the system mailbox.

Communication Class

This array element holds further information regarding the protocol stack. It is intended to help
identifying the 'communication class' or 'device class' of the protocol.

 UNDEFINED #define RCX_COMM_CLASS_UNDEFINED 0x0000

 UNCLASSIFIABLE #define RCX_COMM_CLASS_UNCLASSIFIABLE 0x0001

 MASTER #define RCX_COMM_CLASS_MASTER 0x0002

 SLAVE #define RCX_COMM_CLASS_SLAVE 0x0003

 SCANNER #define RCX_COMM_CLASS_SCANNER 0x0004

 ADAPTER #define RCX_COMM_CLASS_ADAPTER 0x0005

 MESSAGING #define RCX_COMM_CLASS_MESSAGING 0x0006

 CLIENT #define RCX_COMM_CLASS_CLIENT 0x0007

 SERVER #define RCX_COMM_CLASS_SERVER 0x0008

netX DPM Interface Manual Dual-Port Memory Definitions • 39

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 IO-CONTROLLER #define RCX_COMM_CLASS_IO_CONTROLLER 0x0009

 IO-DEVICE #define RCX_COMM_CLASS_IO_DEVICE 0x000A

 IO-SUPERVISOR #define RCX_COMM_CLASS_IO_SUPERVISOR 0x000B

 GATEWAY #define RCX_COMM_CLASS_GATEWAY 0x000C

 MONITOR / ANALYZER #define RCX_COMM_CLASS_MONITOR 0x000D

 PRODUCER #define RCX_COMM_CLASS_PRODUCER 0x000E

 CONSUMER #define RCX_COMM_CLASS_CONSUMER 0x000F

 SWITCH #define RCX_COMM_CLASS_SWITCH 0x0010

 HUB #define RCX_COMM_CLASS_HUB 0x0011

 COMBINATION FIRMWARE #define RCX_COMM_CLASS_COMBI 0x0012
This protocol class is used to identify a firmware file that consists of two or more protocol stacks.
COMBINATION FIRMWARE, however, is never shown in the communication class field in the
dual-port memory. The communication class of the protocol stack is shown instead.

 MANAGING NODE #define RCX_COMM_CLASS_MANAGING_NODE 0x0013

 CONTROLLED NODE #define RCX_COMM_CLASS_CONTROLLED_NODE 0x0014

 Others are reserved.

Protocol and Task Class

This field identifies the protocol stack or the task, respectively.

 UNDEFINED #define RCX_PROT_CLASS_UNDEFINED 0x0000

 3964R #define RCX_PROT_CLASS_3964R 0x0001

 AS Interface #define RCX_PROT_CLASS_ASINTERFACE 0x0002

 ASCII #define RCX_PROT_CLASS_ASCII 0x0003

 CANopen #define RCX_PROT_CLASS_CANOPEN 0x0004

 CC-Link #define RCX_PROT_CLASS_CCLINK 0x0005

 CompoNet #define RCX_PROT_CLASS_COMPONET 0x0006

 ControlNet #define RCX_PROT_CLASS_CONTROLNET 0x0007

 DeviceNet #define RCX_PROT_CLASS_DEVICENET 0x0008

 EtherCAT #define RCX_PROT_CLASS_ETHERCAT 0x0009

 EtherNet/IP #define RCX_PROT_CLASS_ETHERNET_IP 0x000A

 Foundation Fieldbus #define RCX_PROT_CLASS_FOUNDATION_FB 0x000B

 FL Net #define RCX_PROT_CLASS_FL_NET 0x000C

 InterBus #define RCX_PROT_CLASS_INTERBUS 0x000D

 IO-Link #define RCX_PROT_CLASS_IO_LINK 0x000E

 LON #define RCX_PROT_CLASS_LON 0x000F

 Modbus Plus #define RCX_PROT_CLASS_MODBUS_PLUS 0x0010

 Modbus RTU #define RCX_PROT_CLASS_MODBUS_RTU 0x0011

 Open Modbus TCP #define RCX_PROT_CLASS_OPEN_MODBUS_TCP 0x0012

 PROFIBUS DP #define RCX_PROT_CLASS_PROFIBUS_DP 0x0013

 PROFIBUS MPI #define RCX_PROT_CLASS_PROFIBUS_MPI 0x0014

netX DPM Interface Manual Dual-Port Memory Definitions • 40

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 PROFINET IO #define RCX_PROT_CLASS_PROFINET_IO 0x0015

 RK512 #define RCX_PROT_CLASS_RK512 0x0016

 SERCOS II #define RCX_PROT_CLASS_SERCOS_II 0x0017

 SERCOS III #define RCX_PROT_CLASS_SERCOS_III 0x0018

 TCP/IP, UDP/IP #define RCX_PROT_CLASS_TCP_IP_UDP_IP 0x0019

 Powerlink #define RCX_PROT_CLASS_POWERLINK 0x001A

 HART #define RCX_PROT_CLASS_HART 0x001B

 COMBINATION FIRMWARE #define RCX_PROT_CLASS_COMBI 0x001C
This protocol class is used to identify a firmware file that consists of two or more protocol stacks.
COMBINATION FIRMWARE, however, is never shown in the protocol class field once the
firmware is started. The protocol class of the protocol stack is shown instead.

 Programmable Gateway #define RCX_PROT_CLASS_PROG_GATEWAY 0x001D
The programmable gateway function uses netSCRIPT as programming language.

 Programmable Serial #define RCX_PROT_CLASS_PROG_SERIAL 0x001E
The programmable serial protocol function uses netSCRIPT as programming language.

 PLC: CoDeSys #define RCX_PROT_CLASS_PLC_CODESYS 0x001F

 PLC: ProConOS #define RCX_PROT_CLASS_PLC_PROCONOS 0x0020

 PLC: IBH S7 #define RCX_PROT_CLASS_PLC_IBH_S7 0x0021

 PLC: ISaGRAF #define RCX_PROT_CLASS_PLC_ISAGRAF 0x0022

 Visualization: QVis #define RCX_PROT_CLASS_VISU_QVIS 0x0023

 Ethernet #define RCX_PROT_CLASS_ETHERNET 0x0024

 OEM, Proprietary #define RCX_PROT_CLASS_OEM 0xFFF0

 Others are reserved

Conformance Class

This is field identifies the supported functionality of the protocol stack (PROFIBUS supports DPV1 or
DPV2, PROFINET complies with conformance class A/B/C, etc.). The entry depends on the protocol
class of the communication channel (see above) and is defined is a protocol specific manual.

Reserved

These areas are reserved for further use and should not be altered. It is set to zero. The same applies
to the user-defined array in the application section of the above structure.

netX DPM Interface Manual Dual-Port Memory Definitions • 41

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.1.3 System Handshake Register

The system handshake cells are located in the handshake channel (see page 64). They are used to
synchronize data transfer via the system mailbox and to handle the change of state function. They
also hold information about the status of the operating system rcX and can be used to execute certain
commands in the firmware (as a system wide reset for example). See page 22 for details to the
command/acknowledge mechanism.

For the default layout (page 47), the handshake registers are located in the handshake channel.

3.1.3.1 netX System Flags

The netX system register is written by the netX; the host system reads this register.

bNetxSysFlags – netX writes, Host reads

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 NSF_READY

 NSF_ERROR

 NSF_HOST_COS_ACK

 NSF_NETX_COS_CMD

 NSF_SEND_MBX_ACK

 NSF_RECV_MBX_CMD

unused, set to zero

Table 10 - netX System Flags

NOTE The data width of the netX system flags is 8 bit. The bits D15 – D8 are ignored.

netX System Flags (netX Host System)
 READY #define NSF_READY 0x0001

The Ready flag is set as soon as the operating system has initialized itself properly and passed its
self test. When the flag is set, the netX is ready to accept packets via the system mailbox. If
cleared, the netX does not accept any packages.

 ERROR #define NSF_ERROR 0x0002
The Error flag is set when the netX has detected an internal error condition. This is considered to
be a fatal error. The Ready flag is cleared and the operating system is stopped. An error code
helping to identify the issue is placed in the ulSystemError variable in the system status block (see
page 44).

 HOST CHANGE OF STATE ACKNOWLEDGE
 #define NSF_HOST_COS_ACK 0x0004
The Host Change of State Acknowledge flag is set when the netX acknowledges a command from
the host system. This flag is used together with the Host Change of State Command flag in the
host system flags on page 42.

 NETX CHANGE OF STATE COMMAND
 #define NSF_NETX_COS_CMD 0x0010
The netX Change of State Command flag is set if the netX signals a change of its state to the host
system. Details of what has changed can be found in the ulSystemCOS variable in the system
control block (see page 43).

netX DPM Interface Manual Dual-Port Memory Definitions • 42

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 SEND MAILBOX ACKNOWLEDGE
 #define NSF_SEND_MBX_ACK 0x0020
Both the Send Mailbox Acknowledge flag and the Send Mailbox Command flag are used together
to transfer non-cyclic packages between the host system and the netX.

 RECEIVE MAILBOX COMMAND
 #define NSF_RECV_MBX_CMD 0x0040
Both the Receive Mailbox Command flag and the Receive Mailbox Acknowledge flag are used
together to transfer non-cyclic packages between the netX and the host.

Detail on the process data handshake mechanism can be found on page 78.

3.1.3.2 Host System Flags

The host system flags are written by the host system; the netX reads these flags.

bHostSysFlags – Host writes, netX reads

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 HSF_RESET

 HSF_BOOTSTART

 HSF_HOST_COS_CMD

 HSF_NETX_COS_ACK

 HSF_SEND_MBX_CMD

 HSF_RECV_MBX_ACK

unused, set to zero

Table 11 - netX System Flags

NOTE The data width of the host system flags is 8 bit. The bits D15 – D8 are ignored.

Host System Flags (Host netX System)
 RESET #define HSF_RESET 0x0001

The Reset flag is set by the host system to execute a system wide reset. This forces the system to
restart. All network connections are interrupted immediately regardless of their current state.

 BOOT START #define HSF_BOOTSTART 0x0002
If set during reset, the Boot-Start flag forces the netX to stay in boot loader mode; a firmware, that
may reside in the context of the operating system rcX is not started. If cleared during reset, the
operating system will start the firmware, if available.

 HOST CHANGE OF STATE COMMAND
 #define HSF_HOST_COS_CMD 0x0004
The Host Change of State Command flag is set by the host system to signal a change of its state
to the netX. Details of what has changed can be found in the ulSystemCommandCOS variable in
the system control block (see page 43).

 NETX CHANGE OF STATE ACKNOWLEDGE
 #define HSF_NETX_COS_ACK 0x0008
The netX Change of State Acknowledge flag is set by the host system to acknowledge the new
state of the netX. This flag is used together with the netX Change of State Command flag in the
netX system flags on page 41.

netX DPM Interface Manual Dual-Port Memory Definitions • 43

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 SEND MAILBOX COMMAND #define HSF_SEND_MBX_CMD 0x0010
Both the Send Mailbox Command flag and the Send Mailbox Acknowledge flag are used together
to transfer non-cyclic packages between the host system and the netX.

 RECEIVE MAILBOX ACKNOWLEDGE
 #define HSF_RECV_MBX_ACK 0x0020
Both the Receive Mailbox Acknowledge flag and the Receive Mailbox Command flag are used
together to transfer non-cyclic packages between the netX and the host system.

3.1.4 System Handshake Block

If required, the handshake register can be moved from the handshake block to the beginning of the
channel block. This handshake block is not yet supported and therefore set to zero.

System Handshake Block

Offset Type Name Description

0x00B0
… 0x00B7 UINT8 abReserved[8] Reserved

Not used, set to 0

Table 12 -System Handshake Block

System Handshake Block Structure Reference
typedef struct NETX_SYSTEM_HANDSHAKE_BLOCK_Ttag
{
 UINT8 abReserved[8];
} NETX_SYSTEM_HANDSHAKE_BLOCK_T;

3.1.5 System Control Block

The system control block is used by the host system to force the netX to execute certain commands in
the future. Currently there are no such commands defined. The system control block can also be read
using the mailbox interface (see page 67 for details).

System Control Block

Offset Type Name Description

0x00B8 UINT32 ulSystemCommandCOS System Change Of State
Not supported yet, set to 0

0x00BC UINT32 ulReserved Reserved
Not used, set to 0

Table 13 - System Control Block

System Control Block Structure Reference
typedef struct NETX_SYSTEM_CONTROL_BLOCK_Ttag
{
 UINT32 ulSystemCommandCOS;
 UINT32 ulReserved;
} NETX_SYSTEM_CONTROL_BLOCK_T;

Changing flags in this register requires the driver/application also to toggle the Host Change of State
Command flag in the Host System Flags register (see page 42). Only then, the netX protocol stack
recognizes the change.

netX DPM Interface Manual Dual-Port Memory Definitions • 44

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.1.6 System Status Block

The system status block provides information about the state of the netX firmware. This block can also
be read using the mailbox interface (see page 67 for details).

System Status Block

Offset Type Name Description

0x00C0 UINT32 ulSystemCOS System Change Of State
DEFAULT LAYOUT (see page 44)

0x00C4 UINT32 ulSystemStatus System Status
(not supported yet)

0x00C8 UINT32 ulSystemError System Error
Indicates Success or an Error Code

0x00CC UINT32 ulReserved Reserved
Set To 0

0x00D0 UINT32 ulTimeSinceStart Time Since Startup
Time Elapsed Since Startup (POR) in s

0x00D4 UINT16 usCpuLoad CPU Load
CPU Load in 0.01% Units

0x00D6
… 0x00FF UINT8 abReserved[42] Reserved

Set to 0

Table 14 - System Status Block

System Status Block Structure Reference
typedef struct NETX_SYSTEM_STATUS_BLOCK_Ttag
{
 UINT32 ulSystemCOS;
 UINT32 ulSystemStatus;
 UINT32 ulSystemError;
 UINT32 ulReserved;
 UINT32 ulTimeSinceStart;
 UINT16 usCpuLoad;
 UINT8 abReserved[42];
} NETX_SYSTEM_STATUS_BLOCK_T;

System Change of State

The change of state field contains information of the current operating status of the communication
channel. Every time the status changes, the netX toggles the netX Change of State Command flag in
the netX communication flags register. The host system then has to toggle the netX Change of State
Acknowledge flag back acknowledging the new state.

 UNDEFINED #define RCX_SYS_COS_UNDEFINED 0x00000000

 DEFAULT MEMORY MAP #define RCX_SYS_COS_DEFAULT_MEMORY 0x80000000
If set, the default dual-port memory layout as outlined on page 47 is applied. This bit is set once
after power up or reset and changes only after reconfiguration.

 Others are reserved.

System Status

The system status field holds information regarding netX operating system rcX. The value indicates
the current state the rcX is in. Currently not supported and set to 0.

netX DPM Interface Manual Dual-Port Memory Definitions • 45

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

System Error

The system error field holds information about the general status of the netX firmware stacks. An error
code of zero indicates a faultless system. If the system error field holds a value other than SUCCESS,
the Error flag in the netX System flags is set (see page 3.1.3.1). See section 7 on page 203 for error
codes.

Time since Startup

This field holds the time that elapsed since startup (Power-On-Reset, etc). The time is given in multiple
of 1 s.

CPU Load

This field holds the netX CPU load. A value of 10000 corresponds to 100%. Therefore the resolution is
0.01%.

netX DPM Interface Manual Dual-Port Memory Definitions • 46

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.1.7 System Mailbox

The system mailbox is the "window" to the operating system. It is always present even if no firmware is
loaded. A driver/application uses the mailbox system to determine the actual layout of the dual-port
memory (see page 66 for details).

NOTE Each mailbox can hold one packet at a time. The netX firmware stores packets that are not
retrieved by the host application in a packet queue. This queue has limited space and may
fill up so new packets get lost. To avoid this, it is strongly recommended to frequently
empty the mailbox, even if the host application does not expect any packets at all.
Unexpected command packets should be returned to the sender with an Unknown
Command in the status field; unexpected reply messages can be discarded.

The system mailbox area has a send and a receive mailbox. Both mailboxes have a size of 124 bytes.
The mailbox area preceding are two counters indicating the number of packages that can be accepted
by the netX firmware (for the send mailbox) respectively the number of packages waiting (for the
receive mailbox). The send mailbox is used to transfer data to the rcX. The receive mailbox is
used to transfer data from the rcX. Non-cyclic packets are transferred between the netX firmware
and the host application by means of handshake bits. These bits regulate access rights between the
netX and the host system to either mailbox (see page 48 for details).

System Mailboxes

Offset Type Name Description

0x0100 UINT16 usPackagesAccepted Packages Accepted
Number Of Packages That Can Be Accepted

0x0102 UINT16 usReserved Reserved
Set to 0

0x0104
… 0x017F UINT8 abSendMbx[124] System Send Mailbox

Host System netX

0x0180 UINT16 usWaitingPackages
Waiting Packages
Counter Of Packages That Are Waiting To Be
Processed

0x182 UINT16 usReserved Reserved
Set to 0

0x0184
… 0x01FF UINT8 abRecvMbx[124] System Receive Mailbox

netX Host System

Table 15 - System Mailbox

System Mailbox Structure Reference
typedef struct NETX_SYSTEM_SEND_MAILBOX_Ttag
{
 UINT16 usPackagesAccepted;
 UINT16 usReserved;
 UINT8 abSendMbx[124];
} NETX_SYSTEM_SEND_MAILBOX_T;

typedef struct NETX_SYSTEM_RECV_MAILBOX_Ttag
{
 UINT16 usWaitingPackages;
 UINT16 usReserved;
 UINT8 abRecvMbx[124];
} NETX_SYSTEM_RECV_MAILBOX_T;

netX DPM Interface Manual Dual-Port Memory Definitions • 47

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.2 Communication Channel

3.2.1 Default Memory Layout

The netX features a compact layout for small host systems. With the preceding system and
handshake channel its total size is 16 KByte. The protocol stack will set the default memory map flag
in the ulSystemCOS variable in system status block on page 44. If the default memory map flag is
cleared, the layout of the dual-port memory is variable in its size and location.

Default Communication Channel Layout

Offset Type Name Description

0x0300 Structure tReserved Reserved
See Page 51 for Details

0x0308 Structure tControl Control
See Page 52 for Details

0x0310 Structure tCommonStatus Common Status Block
See Page 54 for Details

0x0350 Structure tExtendedStatus Extended Status Block
See Page 60 for Details

0x0500 Structure tSendMbx Send Mailbox
See Page 60 for Details

0x0B40 Structure tRecvMbx Receive Mailbox
See Page 60 for Details

0x1180 UINT8 abPd1Output[64] High Priority Output Data Image 1
Not Yet Supported, Set to 0

0x11C0 UINT8 abPd1Input[64] High Priority Input Data Image 1
Not Yet Supported, Set to 0

0x1200 UINT8 abReserved1[256] Reserved
Set to 0

0x1300 UINT8 abPd0Output[5760] Output Data Image 0
See Page 63 for Details

0x2980 UINT8 abPd0Input[5760] Input Data Image 0
See Page 63 for Details

Table 16 - Default Communication Channel Layout

Default Communication Channel Structure Reference
typedef struct NETX_DEFAULT_COMM_CHANNEL_Ttag
{
 NETX_HANDSHAKE_BLOCK_T tReserved;
 NETX_CONTROL_BLOCK_T tControl;
 NETX_COMMON_STATUS_BLCOK_T tCommonStatus;
 NETX_EXTENDED_STATUS_BLOCK_T tExtendedStatus;
 NETX_SEND_MAILBOX_BLOCK_T tSendMbx;
 NETX_RECV_MAILBOX_BLOCK_T tRecvMbx;
 UINT8 abPd1Output[64];
 UINT8 abPd1Input[64];
 UINT8 abReserved1[256];
 UINT8 abPd0Output[5760];
 UINT8 abPd0Input[5760];
} NETX_DEFAULT_COMM_CHANNEL_T;

netX DPM Interface Manual Dual-Port Memory Definitions • 48

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.2.2 Channel Handshake Register

The channel handshake register are used to indicate the status of the protocol stack as well as
execute certain commands in the protocol stack (reset a channel for instance). The process data
handshake flags are used only if the buffered handshake mode is configured (see page 78 for details).
The mailbox flags are used to send and receive non-cyclic messages via the channel mailboxes. See
page 60 for details to the command/acknowledge mechanism.

For the default layout, (see page 47) the handshake registers are located in the handshake channel
(see page 64).

3.2.2.1 netX Communication Flags

The netX protocol stack writes the register; the register is read by the host system.

usNetxCommFlags - netX writes, Host reads

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 NCF_COMMUNICATING

 NCF_ERROR

 NCF_HOST_COS_ACK

 NCF_NETX_COS_CMD

 NCF_SEND_MBX_ACK

 NCF_RECV_MBX_CMD

 NCF_PD0_OUT_ACK

 NCF_PD0_IN_CMD

 NCF_PD1_OUT_ACK (not supported yet)

 NCF_PD1_IN_CMD (not supported yet)

unused, set to zero

Table 17 - netX Communication Channel Flags

netX Communication Flags (netX Application)
 COMMUNICATING #define NCF_COMMUNICATING 0x0001

The Communicating flag is set if the protocol stack has successfully opened a connection to at
least one of the configured network slaves (for master protocol stacks), respectively has an open
connection to the network master (for slave protocol stacks). If cleared, the input data should not
be evaluated, because it may be invalid, old or both. At initialization time, this flag is cleared.

 ERROR #define NCF_ERROR 0x0002
The Error flag signals an error condition that is reported by the protocol stack. It could indicate a
network communication issue or something to that effect. The corresponding error code is placed
in the ulCommunicationError variable in the common status block (see page 54). At initialization
time, this flag is cleared.

 HOST CHANGE OF STATE ACKNOWLEDGE
 #define NCF_HOST_COS_ACK 0x0004
The Host Change of State Acknowledge flag is used by the protocol stack indicate that the new
state of the host application has been read. At initialization time, this flag is cleared.

netX DPM Interface Manual Dual-Port Memory Definitions • 49

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 NETX CHANGE OF STATE COMMAND
 #define NCF_NETX_COS_CMD 0x0008
The netX Change of State Command flag signals a change in the state of the protocol stack. The
new state can be found in the ulCommunicationCOS variable in the common status block (see
page 54). The host application then toggles the netX Change of State Acknowledge flag in the
host communication flags back acknowledging that the new protocol state has been read. At
initialization time, this flag is cleared.

 SEND MAILBOX ACKNOWLEDGE
 #define NCF_SEND_MBX_ACK 0x0010
Both the Send Mailbox Acknowledge flag and the Send Mailbox Command flag are used together
to transfer non-cyclic packages between the protocol stack and the application. At initialization
time, this flag is cleared.

 RECEIVE MAILBOX COMMAND
 #define NCF_RECV_MBX_CMD 0x0020
Both the Receive Mailbox Command flag and the Receive Mailbox Acknowledge flag are used
together to transfer non-cyclic packages between the application and the protocol stack. At
initialization time, this flag is cleared.

 PROCESS DATA OUT ACKNOWLEDGE
 #define NCF_PD0_OUT_ACK 0x0040
(not supported yet: #define RCX_NCF_PD1_OUT_ACK 0x0100)
Both the PDx OUT Acknowledge flag and the PDx OUT Command flag are used together to
transfer cyclic data between the application and the protocol stack. ('x' indicates the number of the
output/input area.) At initialization time, this flag may be set, depending on the data exchanged
mode.

 PROCESS DATA IN COMMAND
 #define NCF_PD0_IN_CMD 0x0080
(not supported yet: #define NCF_PD1_IN_CMD 0x0200)
Both the PDx IN Command flag and the PDx IN Acknowledge flag are used together to transfer
cyclic data between the protocol stack and the application. ('x' indicates the number of the
output/input area.) At initialization time, this flag may be set, depending on the data exchanged
mode.

NOTE If accessed in 8-bit mode, bits 15 … 8 are not available.

Detail on the process data handshake mechanism can be found on page 78.

netX DPM Interface Manual Dual-Port Memory Definitions • 50

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.2.2.2 Host Communication Flags

The register is written by the host system; the register is read by the netX protocol stack.

usHostCommFlags - Host writes, netX reads

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 unused

 HCF_HOST_COS_CMD

 HCF_NETX_COS_ACK

 HCF_SEND_MBX_CMD

 HCF_RECV_MBX_ACK

 HCF_PD0_OUT_CMD

 HCF_PD0_IN_ACK

 HCF_PD1_OUT_CMD (not supported yet)

 HCF_PD1_IN_ACK (not supported yet)

unused, set to zero

Table 18 - Communication Channel Flags

Host Communication Flags (Application netX System)
 HOST CHANGE OF STATE COMMAND

 #define HCF_HOST_COS_CMD 0x0004
The Host Change of State Command (COS) flag signals a change in the state of the host
application. A new state is set in the ulApplicationCOS variable in the communication control block
(see page 52). The protocol stack on the netX then toggles the Host Change of State
Acknowledge flag in the netX communication flags back acknowledging that the new state has
been read. At initialization time, this flag is cleared.

 NETX CHANGE OF STATE ACKNOWLEDGE
 #define HCF_NETX_COS_ACK 0x0008
The netX Change of State Acknowledge (COS) flag is used by host application to indicate that the
new state of the protocol stack has been read. At initialization time, this flag is cleared.

 SEND MAILBOX COMMAND
 #define HCF_SEND_MBX_CMD 0x0010
Both the Send Mailbox Command flag and the Send Mailbox Acknowledge flag are used together
to transfer non-cyclic packages between the application and the protocol stack. At initialization
time, this flag is cleared.

 RECEIVE MAILBOX ACKNOWLEDGE
 #define HCF_RECV_MBX_CMD 0x0020
Both the Receive Mailbox Acknowledge flag and the Receive Mailbox Command flag are used
together to transfer non-cyclic packages between the protocol stack and the application. At
initialization time, this flag is cleared.

 PROCESS DATA OUT COMMAND
 #define HCF_PD0_OUT_CMD 0x0040
(not supported yet: #define HCF_PD1_OUT_CMD 0x0100)
Both the PDx OUT Command flag and the PDx OUT Acknowledge flag are used together to
transfer cyclic data between the application and the protocol stack. ('x' indicates the number of the
output/input area.) At initialization time, this flag may be set, depending on the data exchanged
mode.

netX DPM Interface Manual Dual-Port Memory Definitions • 51

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 PROCESS DATA IN ACKNOWLEDGE
 #define HCF_PD0_IN_ACK 0x0080
(not supported yet: #define HCF_PD1_IN_ACK 0x0200)
Both the PDx IN Acknowledge flag and the PDx IN Command flag are used together to transfer
cyclic data between the protocol stack and the application. ('x' indicates the number of the
output/input area.) At initialization time, this flag may be set, depending on the data exchanged
mode.

NOTE If accessed in 8-bit mode, bits 15 … 8 are not available.

Detail on the process data handshake mechanism can be found on page 78.

3.2.3 Handshake Block

If required, the handshake register can be moved from the handshake channel to the beginning of the
communication channel area. This handshake block is not yet supported and therefore set to zero. It is
always available in the default memory map (see page 47). Locating the handshake block in the
channel section of the dual-port memory is not supported yet.

Communication Handshake Block

Offset Type Name Description

0x0000
… 0x0007 UINT8 abReserved[8] Reserved, Set to Zero

Table 19 - Communication Handshake Block

Communication Handshake Block Structure Reference
typedef struct NETX_HANDSHAKE_BLOCK_Ttag
{
 UINT8 abReserved[8];
} NETX_HANDSHAKE_BLOCK_T;

netX DPM Interface Manual Dual-Port Memory Definitions • 52

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.2.4 Control Block

The control block of a dual-port memory features a watchdog function to allow the operating system
running on the netX supervise the host application and vice versa. The control area is always present
in the dual-port memory. This block can also be read using the mailbox interface (see page 67 for
details).

Control Block

Offset Type Name Description

0x0008 UINT32 ulApplicationCOS

Application Change Of State
State Of The Application Program
READY, BUS ON, INITIALIZATION, LOCK
CONFIGURATION (see page 52)

0x000C UINT32 ulDeviceWatchdog
Device Watchdog
Host System Writes, Protocol Stack Reads
(see page 53)

Table 20 - Communication Control Block

Communication Control Block Structure Reference
typedef struct NETX_CONTROL_BLOCK_Ttag
{
 UINT32 ulApplicationCOS;
 UINT32 ulDeviceWatchdog;
} NETX_CONTROL_BLOCK_T;

Application Change of State

Using this state field the application can send commands to the communication channel.

ulApplicationCOS - Host writes, netX reads

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 RCX_APP_COS_APP_
READY

 RCX_APP_COS_BUS_ON

 RCX_APP_COS_BUS_ON_ENABLE

 RCX_APP_COS_INIT

 RCX_APP_COS_INIT_ENABLE

 RCX_APP_COS_LOCK_CONFIG

 RCX_APP_COS_LOCK_CONFIG_ENABLE

unused, set to zero

Table 21 - Application Change of State

netX DPM Interface Manual Dual-Port Memory Definitions • 53

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Application Change of State Flags (Application netX System)
 APPLICATION READY #define RCX_APP_COS_APP_READY 0x00000001

If set, the host application indicates to the protocol stack that its state is Ready. Not supported yet.

 BUS ON #define RCX_APP_COS_BUS_ON 0x00000002
Using the Bus On flag, the host application allows or disallows the firmware to open network
connections. This flag is used together Bus On Enable flag below. If set, the netX firmware tries to
open network connections; if cleared, no connections are allowed and open connections are
closed.

 BUS ON ENABLE #define RCX_APP_COS_BUS_ON_ENABLE 0x00000004
The Bus On Enable flag is used together with the Bus On flag above. If set, this flag enables the
execution of the Bus On command in the netX firmware (for details on the Enable mechanism see
page 23).

 INITIALIZATION #define RCX_APP_COS_INIT 0x00000008
Setting the Initialization flag the application forces the protocol stack to restart and evaluate the
configuration parameter again. All network connections are interrupted immediately regardless of
their current state. If the database is locked, re-initializing the channel is not allowed.

 INITIALIZATION ENABLE #define RCX_APP_COS_INIT_ENABLE 0x00000010
The Initialization Enable flag is used together with the Initialization flag above. If set, this flag
enables the execution of the Initialization command in the netX firmware (for details on the Enable
mechanism see page 23).

 LOCK CONFIGURATION #define RCX_APP_COS_LOCK_CONFIG 0x00000020
If set, the host system does not allow the firmware to reconfigure the communication channel. The
database will be locked. The Configuration Locked flag in the channel status block (see page 54)
shows if the current database has been locked.

 LOCK CONFIGURATION ENABLE
 #define RCX_APP_COS_LOCK_CONFIG_ENABLE 0x00000040
The Lock Configuration Enable flag is used together with the Lock Configuration flag above. If set,
this flag enables the execution of the Lock Configuration command in the netX firmware (for
details on the Enable mechanism see page 23).

 Others are reserved.

Changing flags in the above register requires the application also to toggle the Host Change of State
Command flag in the Host Communication Flags register (see page 50). Only then, the netX protocol
stack recognizes the change.

Device Watchdog

The protocol stack supervises the host system using the watchdog function. If the application fails to
copy the value from the host watchdog location (page 54) to the device watchdog location (page 52),
the protocol stack assumes that the host system has some sort of problem and interrupts all network
connections immediately regardless of their current state. For details on the watchdog function, refer
to section 4.15 on page 153.

netX DPM Interface Manual Dual-Port Memory Definitions • 54

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.2.5 Common Status Block

The common status block contains information fields that are common to all protocol stacks. The
status block is always present in the dual-port memory. This block can also be read using the mailbox
interface (see page 67 for details).

3.2.5.1 All Implementations

The structure outlined below is common to all protocol stacks.

Common Status Block

Offset Type Name Description

0x0010 UINT32 ulCommunicationCOS

Communication Change of State
READY, RUN, RESET REQUIRED, NEW
CONFIG AVAILABLE, CONFIG LOCKED
(see page 55)

0x0014 UINT32 ulCommunicationState
Communication State
OFFLINE, STOP, IDLE, OPERATE
(see page 56)

0x0018 UINT32 ulCommunicationError
Communication Error
Unique Error Number According to Protocol Stack
(see page 56)

0x001C UINT16 usVersion
Version
Version Number of this Diagnosis Structure
(see page 56)

0x001E UINT16 usWatchdogTime Watchdog Time
Configured Watchdog Time (see page 56)

0x0020 UINT16 ausReserved[2] Reserved
Former version Protocol Class, set to 0

0x0024 UINT32 ulHostWatchdog

Host Watchdog
Joint Supervision Mechanism
Protocol Stack Writes, Host System Reads
(see page 57)

0x0028 UINT32 ulErrorCount
Error Count
Total Number of Detected Error Since Power-Up
or Reset (see page 57)

0x002C UINT32 ulErrorLogInd
Error Log Indicator
Total Number Of Entries In The Error Log
Structure (not supported yet) (see page 57)

0x0030 UINT32 aulReserved[2] Reserved
Set to 0

Table 22 - Common Status Block

netX DPM Interface Manual Dual-Port Memory Definitions • 55

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Common Status Block Structure Reference
typedef struct NETX_COMMON_STATUS_BLOCK_Ttag
{
 UINT32 ulCommunicationCOS;
 UINT32 ulCommunicationState;
 UINT32 ulCommunicationError;
 UINT16 usVersion;
 UINT16 usWatchdogTime;
 UINT16 ausReserved[2];
 UINT32 ulHostWatchdog;
 UINT32 ulErrorCount;
 UINT32 ulErrorLogInd;
 UINT32 ulReserved[2];
 union
 {
 NETX_MASTER_STATUS_T tMasterStatus; /* for master implementation */
 UINT32 aulReserved[6]; /* otherwise reserved */
 } unStackDepended;
} NETX_COMMON_STATUS_BLOCK_T;

Communication Change of State (All Implementations)

The communication change of state register contains information about the current operating status of
the communication channel and its firmware. Every time the status changes, the netX protocol stack
toggles the netX Change of State Command flag in the netX communication flags register (see page
48). The application then has to toggle the netX Change of State Acknowledge flag back
acknowledging the new state.

ulCommunicationCOS - netX writes, Host reads

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 RCX_COMM_COS_
READY

 RCX_COMM_COS_RUN

 RCX_COMM_COS_BUS_ON

 RCX_COMM_COS_CONFIG_LOCKED

 RCX_COMM_COS_CONFIG_NEW

 RCX_COMM_COS_RESTART_REQUIRED

 RCX_COMM_COS_RESTART_REQUIRED_ENABLE

Unused, set to zero

Table 23 - Communication State of Change

Communication Change of State Flags (netX System Application)
 READY #define RCX_COMM_COS_READY 0x00000001

The Ready flag is set as soon as the protocol stack is started properly. Then the protocol stack is
awaiting a configuration. As soon as the protocol stack is configured properly, the Running flag is
set, too.

 RUNNING #define RCX_COMM_COS_RUN 0x00000002
The Running flag is set when the protocol stack has been configured properly. Then the protocol
stack is awaiting a network connection. Now both the Ready flag and the Running flag are set.

netX DPM Interface Manual Dual-Port Memory Definitions • 56

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 BUS ON #define RCX_COMM_COS_BUS_ON 0x00000004
The Bus On flag is set to indicate to the host system whether or not the protocol stack has the
permission to open network connections. If set, the protocol stack has the permission to
communicate on the network; if cleared, the permission was denied and the protocol stack will not
open network connections.

 CONFIGURATION LOCKED #define RCX_COMM_COS_CONFIG_LOCKED 0x00000008
The Configuration Locked flag is set, if the communication channel firmware has locked the
configuration database against being overwritten. Re-initializing the channel is not allowed in this
state. To unlock the database, the application has to clear the Lock Configuration flag in the
control block (see page 52).

 CONFIGURATION NEW #define RCX_COMM_COS_CONFIG_NEW 0x00000010
The Configuration New flag is set by the protocol stack to indicate that a new configuration
became available, which has not been activated. This flag may be set together with the Restart
Required flag.

 RESTART REQUIRED
 #define RCX_COMM_COS_RESTART_REQUIRED 0x00000020
The Restart Required flag is set when the channel firmware requests to be restarted. This flag is
used together with the Restart Required Enable flag below. Restarting the channel firmware may
become necessary, if a new configuration was downloaded from the host application or if a
configuration upload via the network took place.

 RESTART REQUIRED ENABLE
 #define RCX_COMM_COS_RESTART_REQUIRED_ENABLE 0x00000040
The Restart Required Enable flag is used together with the Restart Required flag above. If set, this
flag enables the execution of the Restart Required command in the netX firmware (for details on
the Enable mechanism see 23).

 Other are reserved.

Communication State (All Implementations)

The communication state field contains information regarding the current network status of the
communication channel. Depending on the implementation, all or a subset of the definitions below is
supported.

 UNKNOWN #define RCX_COMM_STATE_UNKNOWN 0x00000000

 OFFLINE #define RCX_COMM_STATE_OFFLINE 0x00000001

 STOP #define RCX_COMM_STATE_STOP 0x00000002

 IDLE #define RCX_COMM_STATE_IDLE 0x00000003

 OPERATE #define RCX_COMM_STATE_OPERATE 0x00000004

Communication Channel Error (All Implementations)

This field holds the current error code of the communication channel. If the cause of error is resolved,
the communication error field is set to zero (= RCX_S_OK) again. Not all of the error codes are
supported in every implementation. Protocol stacks may use a subset of the error codes outlined in
section 7 on page 203.

Version (All Implementations)

The version field holds version of this structure. It starts with one; zero is not defined.

 STRUCTURE VERSION #define RCX_STATUS_BLOCK_VERSION 0x0001

netX DPM Interface Manual Dual-Port Memory Definitions • 57

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Watchdog Timeout (All Implementations)

This field holds the configured watchdog timeout value in milliseconds. The application may set its
watchdog trigger interval accordingly. If the application fails to copy the value from the host watchdog
location to the device watchdog location, the protocol stack will interrupt all network connections
immediately regardless of their current state. For details, see page 153.

Host Watchdog (All Implementations)

The protocol stack supervises the host system using the watchdog function. If the application fails to
copy the value from the device watchdog location to the host watchdog location (page 52), the
protocol stack assumes that the host system has some sort of problem and shuts down all network
connections. For details on the watchdog function, refer to section 4.15 on page 54.

Error Count (All Implementations)

This field holds the total number of errors detected since power-up, respectively after reset. The
protocol stack counts all sorts of errors in this field no matter if they were network related or caused
internally. After power cycling, reset or channel initialization this counter is being cleared again.

Error Log Indicator (All Implementations)

Not supported yet: The error log indicator field holds the number of entries in the internal error log. If
all entries are read from the log, the field is set to zero.

netX DPM Interface Manual Dual-Port Memory Definitions • 58

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.2.5.2 Master Implementation

In addition to the common status block as outlined on page 54, a master firmware maintains the
following structure.

Master Status

Start Offset Type Name Description

0x0010 Structure See common structure in Table 22

0x0038 UINT32 ulSlaveState Slave State
OK, FAILED (At Least One Slave) (see page 59)

0x003C UINT32 ulSlaveErrLogInd
Slave Error Log Indicator
Slave Diagnosis Data Available:
EMPTY, AVAILABLE (see page 59)

0x0040 UINT32 ulNumOfConfigSlaves
Configured Slaves
Number of Configured Slaves On The Network
(see page 59)

0x0044 UINT32 ulNumOfActiveSlaves
Active Slaves
Number of Slaves Running Without Problems
(see page 59)

0x0048 UINT32 ulNumOfDiagSlaves
Faulted Slaves
Number of Slaves Reporting Diagnostic Issues
(see page 59)

0x004C UINT32 ulReserved Reserved
Set to 0

Table 24 - Master Status

Master Status Structure Reference
typedef struct NETX_MASTER_STATUS_Ttag
{
 UINT32 ulSlaveState;
 UINT32 ulSlaveErrLogInd;
 UINT32 ulNumOfConfigSlaves;
 UINT32 ulNumOfActiveSlaves;
 UINT32 ulNumOfDiagSlaves;
 UINT32 ulReserved;
} NETX_MASTER_STATUS_T;

netX DPM Interface Manual Dual-Port Memory Definitions • 59

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Slave State

The slave state field indicates whether the master is in cyclic data exchange to all configured slaves. If
there is at least one slave missing or if the slave has a diagnostic request pending, the status changes
to FAILED. For protocols that support non-cyclic communication only, the slave state is set to OK as
soon as a valid configuration is found.

 UNDEFINED #define RCX_SLAVE_STATE_UNDEFINED 0x00000000

 OK #define RCX_SLAVE_STATE_OK 0x00000001

 FAILED (at least one slave) #define RCX_SLAVE_STATE_FAILED 0x00000002

 WARNING (at least one slave) #define RCX_SLAVE_STATE_WARNING 0x00000003

 Others are reserved

Slave Error Log Indicator

Not supported yet: The error log indicator field holds the number of entries in the internal error log. If
all entries are read from the log, the field is set to zero.

Number of Configured Slaves

The firmware maintains a list of slaves to which the master has to open a connection. This list is
derived from the configuration database created by SYCON.net (see 6.1). This field holds the number
of configured slaves.

Number of Active Slaves

The firmware maintains a list of slaves to which the master has successfully opened a communication
relationship. Ideally, the number of active slaves is equal to the number of configured slaves. For
certain fieldbus systems, it could be possible that a slave is shown as activated, but still has a problem
in terms of a diagnostic issue. This field holds the number of active slaves.

Number of Faulted Slaves

If a slave encounters a problem, it may provide an indication of the new situation to the master in
certain fieldbus systems. As long as those indications are pending and not serviced, the field holds a
value unequal zero. If no more diagnostic information is pending, the field is set to zero.

Other Elements

Today no structure elements for devices such as gateway type devices are defined. Those elements
may be included into or added to the structure when it becomes necessary in the future.

3.2.5.3 Slave Implementation

The slave firmware uses the common structure as outlined on page 54 only.

netX DPM Interface Manual Dual-Port Memory Definitions • 60

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.2.6 Extended Status Block (Protocol Specific)

The content of the channel specific status block is specific to the implementation and is defined in a
separate manual. Depending on the protocol, a status area may or may not be used. It is always
available in the default memory map (see page 47). This block can also be read using the mailbox
interface (see page 67 for details).

Extended Status Block (Channel Specific)

Offset Type Name Description

0x0050 UINT8 abExtendedStatus[432] Extended Status Area
Protocol Stack Specific Status Area

Table 25 - Extended Status Block

Extended Status Block Structure Reference
typedef struct NETX_EXTENDED_STATUS_BLOCK_Ttag
{
 UINT8 abExtendedStatus[432];
} NETX_EXTENDED_STATUS_BLOCK_T;

3.2.7 Channel Mailbox

The send and receive mailbox areas are used by fieldbus protocols utilizing a non-cyclic data
exchange mechanism. Another use of the mailbox system is to provide access to the firmware running
on the netX chip itself. The send mailbox is used to transfer data to the network or to the protocol
stack. The receive mailbox is used to transfer data from the network or from the protocol
stack. Fieldbus protocols utilizing non-cyclic data exchange mechanism are for example Modbus Plus
or Ethernet TCP/IP.

NOTE Each mailbox can hold one packet at a time. The netX firmware stores packets that are not
retrieved by the host application in a packet queue. This queue has limited space and may
fill up so new packets get lost. To avoid this, it is strongly recommended to frequently
empty the mailbox, even if the host application does not expect any packets at all.
Unexpected command packets should be returned to the sender with an Unknown
Command in the status field; unexpected reply messages can be discarded. For structure
information of the packet, see page 66 for details.

The size of send and receive mailbox is 1596 bytes each in the default memory layout. The mailboxes
are accompanied by counters that hold the number of waiting packages (for the receive mailbox),
respectively the number of packages that can be accepted (for the send mailbox).

netX DPM Interface Manual Dual-Port Memory Definitions • 61

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

A send/receive mailbox is always available in the communication channel. See page 66 for details on
mailboxes and packets.

Channel Mailboxes

Offset Type Name Description

0x0200 UINT16 usPackagesAccepted Packages Accepted
Number of Packages that can be Accepted

0x0202 UINT16 usReserved Reserved
Set to 0

0x0204 UINT8 abSendMbx[1596]
Send Mailbox
Non Cyclic Data To The Network or To the
Protocol Stack

0x0840 UINT16 usWaitingPackages
Packages Waiting
Counter of Packages that are Waiting to be
Processed

0x0842 UINT16 usReserved Reserved
Set to 0

0x0844 UINT8 abRecvMbx[1596]
Receive Mailbox
Non Cyclic Data From the Network or From the
Protocol Stack

Table 26 - Channel Mailboxes

Channel Mailboxes Structure Reference
typedef struct NETX_SEND_MAILBOX_BLOCK_Ttag
{
 UINT16 usPackagesAccepted;
 UINT16 usReserved;
 UINT8 abSendMbx[1596];
} NETX_SEND_MAILBOX_BLOCK_T;

typedef struct NETX_RECV_MAILBOX_BLOCK_Ttag
{
 UINT16 usWaitingPackages;
 UINT16 usReserved;
 UINT8 abRecvMbx[1596];
} NETX_RECV_MAILBOX_BLOCK_T;

netX DPM Interface Manual Dual-Port Memory Definitions • 62

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.2.8 High Priority Output / Input Data Image

Not supported yet: The high priority output and input areas are used by fieldbus protocols for fast
cyclic process data. A high priority output and input data block is always present in the default memory
map (see page 47). This block can also be read using the mailbox interface (see page 67 for details).

High Priority Output / Input Data Image

Offset Type Name Description

0x0E80 UINT8 abPd1Output[64] High Priority Output Data Image
High Priority Cyclic Data To The Network

0x0EC0 UINT8 abPd1Input[64] High Priority Input Data Image
High Priority Cyclic Data From The Network

Table 27 - High Priority Output / Input Data Image

In case of a network fault (e.g. disconnected network cable), a slave firmware keeps the last state of
the input data image and clears the Communicating flag in netX communication flags (see page 48).
The input data should not be evaluated.

3.2.9 Reserved Area

This area is reserved. This block is always available in the default memory map (see page 47).

Reserved Area

Offset Type Name Description

0x0F00 UINT8 abReserved[256] Reserved
Set to 0

Table 28 - Reserved Area

netX DPM Interface Manual Dual-Port Memory Definitions • 63

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.2.10 Process Data Output/Input Image

The output and input data blocks are used by fieldbus protocols that support cyclic data exchange.
The output data image is used to transfer cyclic data to the network. The input data image is used to
transfer cyclic data from the network. Fieldbus protocols using cyclic data exchange mechanism
are PROFIBUS DPV0 or DeviceNet.

The size of the output and input data image are 5760 byte each in the default memory map. The
output and input data block are always available in the default memory map (see page 47).

Output and Input Data Image

Offset Type Name Description

0x1000 UINT8 abPd0Output[5760] Output Data Image
Cyclic Data To The Network

0x2680 UINT8 abPd0Input[5760] Input Data Image
Cyclic Data From The Network

Table 29 - Output/Input Data Image

NOTE In case of a network fault (e.g. disconnected network cable), a slave firmware keeps the last
state of the input data and clears the Communicating flag in netX communication flags (see
page 48). In this case the input data should not be evaluated.

This block can also be read using the mailbox interface (see page 67 for details).

netX DPM Interface Manual Dual-Port Memory Definitions • 64

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

3.3 Handshake Channel
In the default layout, the handshake channel follows the system channel. It has a size of 256 bytes
and starts at address 0x0200. The handshake channel provides a mechanism that allows synchro-
nizing data transfer between the host system and the netX dual-port memory.

The handshake channel brings all handshake registers from other channel blocks together in one
location. Technically this is a preferred solution for PC based applications. There might be other
requirements in the future. Then the handshake register could be moved from the handshake block to
the beginning of each of the communication channel. For the default layout, the communication
channels already have a reserved space for the handshake available (see page 47).

There are three types of handshake cells.
 System Handshake Cells

are used by the host system to perform reset to the netX operating system or to indicate the
current state of either the host system or the netX

 Communication Channel Handshake Cells
are used to synchronize cyclic and non-cyclic data exchange over IO data images and mailboxes
for communication channels

 Application Handshake Cells
are not supported yet

Handshake Channel
DPM Address Assigned Block netX Register Host Register

0x0200 System Channel, set to 0 0x0200, 0x0201

 System Channel 0x0202 0x0203

 Handshake Channel 0x0204 0x0206

 Communication Channel 0 0x0208 0x020A

 Communication Channel 1 0x020C 0x020E

 Communication Channel 2 0x0210 0x0212

 Communication Channel 3 0x0214 0x0216

 Application Channel 0 0x0218 0x021A

 Application Channel 1 0x021C 0x021E

 Future Registers, set to 0 (8 x UINT16) 0x0220 0x023F

… 0x02FF Reserved, set to 0 0x0240 ... 0x02FF

Table 30 - Handshake Channel

For compatibility reasons, the cells for the handshake block itself (offset 0x0204 and 0x0206) are
present but not used and set to zero. Channel 6 and 7 are not supported yet and set to zero.

netX DPM Interface Manual Dual-Port Memory Definitions • 65

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Handshake Channel Structure Reference
typedef union NETX_HANDSHAKE_REG_Ttag
{
 struct
 {
 UINT8 abData[2];
 UINT8 bNetxFlags; /* netX writes */
 UINT8 bHostFlags; /* host writes */
 } t8Bit;
 struct
 {
 UINT16 usNetxFlags; /* netX writes */
 UINT16 usHostFlags; /* host writes */
 } t16Bit;
 UINT32 ulReg;
} NETX_HANDSHAKE_REG_T;

typedef struct NETX_HANDSHAKE_CHANNEL_Ttag
{
 NETX_HANDSHAKE_REG_T tSysFlags; /* system handshake flags */
 NETX_HANDSHAKE_REG_T tHskFlags; /* not used */
 NETX_HANDSHAKE_REG_T tCommFlags0; /* channel 0 handshake flags */
 NETX_HANDSHAKE_REG_T tCommFlags1; /* channel 1 handshake flags */
 NETX_HANDSHAKE_REG_T tCommFlags2; /* channel 2 handshake flags */
 NETX_HANDSHAKE_REG_T tCommFlags3; /* channel 3 handshake flags */
 NETX_HANDSHAKE_REG_T tAppFlags0; /* not supported yet */
 NETX_HANDSHAKE_REG_T tAppFlags1; /* not supported yet */
 NETX_HANDSHAKE_REG_T tFutureRegs[8]; /* set to 0 */
 UINT16 ulReserved[96];
} NETX_HANDSHAKE_CHANNEL_T;

 LENGTH OF HANDSHAKE BLOCK IN BYTES

 #define NETX_HANDSHAKE_CHANNEL_SIZE 256

 NUMBER OF POSSIBLE HANDSHAKE PAIRS
 #define NETX_HANDSHAKE_PAIRS 16

3.4 Application Channel
This application channel is reserved for user specific implementations. An application channel is not
yet supported.

netX DPM Interface Manual Dual-Port Memory Function • 66

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4 Dual-Port Memory Function

4.1 Non-Cyclic Data Exchange
The mailbox of each communication channel or system channel respectively, has two areas that are
used for non-cyclic message transfer to and from the netX.

 Send Mailbox (System / Communication Channel)
Packet transfer from host system to netX firmware

 Receive Mailbox (System / Communication Channel)
Packet transfer from netX firmware to host system

For a communication channel send and receive mailbox areas are used by fieldbus protocols
providing a non-cyclic data exchange mechanism. Another use of the mailbox system is to allow
access to the firmware running on the netX chip itself for diagnostic and identification purposes. The
send mailbox is used to transfer cyclic data to the network or to the netX. The receive
mailbox is used to transfer cyclic data from the network or from the netX. Fieldbus protocols
utilizing non-cyclic data exchange mechanism are for example Modbus Plus or Ethernet TCP/IP.

It depends on the function of the firmware whether or not a mailbox is used. The location of the system
mailbox and the channel mailbox is described on page 46 respectively on page 60.

NOTE Each mailbox can hold one packet at a time. The netX firmware stores packets that are not
retrieved by the host application in a packet queue. This queue has limited space and may
fill up so new packets maybe lost. To avoid these deadlock situations, it is strongly
recommended to empty the mailbox frequently, even if packets are not expected by the
host application. Unexpected command packets should be returned to the sender with an
Unknown Command in the status field; unexpected reply messages can be discarded.

netX DPM Interface Manual Dual-Port Memory Function • 67

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.1.1 Messages or Packets

The non-cyclic packets through the netX mailbox have the following structure.

Structure Information

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 Destination Queue Handle

ulSrc UINT32 Source Queue Handle

ulDestId UINT32 Destination Queue Reference

ulSrcId UINT32 Source Queue Reference

ulLen UINT32 Packet Data Length (in Bytes)

ulId UINT32 Packet Identification As Unique Number

ulSta UINT32 Status / Error Code

ulCmd UINT32 Command / Response

ulExt UINT32 Reserved

ulRout UINT32 Routing Information

tData Structure Information

 … … User Data
Specific To The Command

Table 31 - Packet Structure

The size of a packet is always at least 40 bytes. Depending on the command, a packet may or may
not have a payload in the data field (tData). If present, the content of the data field is specific to the
command or reply, respectively.

Destination Queue Handler

The ulDest field identifies a task queue in the context of the netX firmware. The task queue represents
the final receiver of the packet and is assigned to a protocol stack. The ulDest field has to be filled out
in any case. Otherwise, the netX operating system cannot route the packet.

Source Queue Handler

The ulSrc field identifies the sender of the packet. In the context of the netX firmware (inter-task
communication) this field holds the identifier of the sending task. Usually, a driver uses this field for its
own handle, but it can hold any handle of the sending process. The receiving task does not evaluate
this field and passes it back unchanged to the originator of the packet.

Destination Identifier

The ulDestId field identifies the destination of an unsolicited packet from the netX firmware to the host
system. It can hold any handle that helps to identify the receiver. Its use is mandatory for unsolicited
packets. The receiver of unsolicited packets has to register for this service (details are TBD).

netX DPM Interface Manual Dual-Port Memory Function • 68

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Source Identifier

The ulSrcId field identifies the originator of a packet. This field is used by a host application, which
passes a packet from an external process to an internal netX task. The ulSrcId field holds the handle
of the external process. When netX operating system returns the packet, the application can identify
the packet and returns it to the originating process. The receiving task on the netX does not evaluate
this field and passes it back unchanged. For inter-task communication, this field is not used.

Length of Data Field

The ulLen field holds the size of the data field tData in bytes. It defines the total size of the packet’s
payload that follows the packet’s header. Note, that the size of the header is not included in ulLen.
Depending on the command or reply, respectively, a data field may or may not be present in a packet.
If no data field is used, the length field is set to zero.

Identifier

The ulId field is used to identify a specific packet among others of the same kind. That way the
application or driver can match a specific reply or confirmation packet to a previous request packet.
The receiving task does not change this field and passes it back to the originator of the packet. Its use
is optional in most of the cases. But it is mandatory for fragmented packets! Example: Downloading
big amounts of data that does not fit into a single packet. For fragmented packets the identifier field is
incremented by one for every new packet.

Status / Error Code

The ulSta field is used in response or confirmation packets. It informs the originator of the packet
about success or failure of the execution of the command. The field may be also used to hold status
information in a request packet. Status and error codes that may be returned in ulSta are outlined in
section 7 on page 203.

Command / Response

The ulCmd field holds the command code or the response code, respectively. The command/response
is specific to the receiving task. If a task is not able to execute certain commands, it will return the
packet with an error indication. A command is always even (the least significant bit is zero). In the
response packet, the command code is incremented by one indicating a confirmation to the request
packet.

Extension

The extension field ulExt is used for controlling packets that are sent in a sequenced or fragmented
manner. The extension field indicates the first, last or a packet of a sequence. If fragmentation of
packets is not required, the extension field is set to zero.

Routing Information

The ulRout field is used internally by the netX firmware only. It has no meaning to a driver type
application and therefore set to zero.

User Data Field

The tData field contains the payload of the packet. Depending on the command or reply, respectively,
a packet may or may not have a data field. The length of the data field is given in the ulLen field.

netX DPM Interface Manual Dual-Port Memory Function • 69

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_PACKET_HEADER_Ttag
{
 UINT32 ulDest; /* Destination Queue Handler */
 UINT32 ulSrc; /* Source Queue Handler */
 UINT32 ulDestId; /* Destination Identifier */
 UINT32 ulSrcId; /* Source Identifier */
 UINT32 ulLen; /* Length of Data Field */
 UINT32 ulId; /* Packet Identifier */
 UINT32 ulSta; /* Status / Error Code */
 UINT32 ulCmd; /* Command / Response */
 UINT32 ulExt; /* Extension Field */
 UINT32 ulRout; /* Routing Information */
} RCX_PACKET_HEADER_T;

4.1.2 About System and Channel Mailbox

The preferred way to address the netX operating system rcX is through the system mailbox and the
preferred way to address a protocol stack is through its channel mailbox. All mailboxes, however, have
a mechanism to route packets to any communication channel or the system channel. Therefore, the
destination identifier ulDest in a packet header has to be filled in according to the targeted receiver.
See the following image.

netX OS
rcX

AP Task 1

AP Task 2

ul
D

es
t =

 0
x0

0

ul
D

es
t =

 0
x0

1

ul
D

es
t =

 0
x0

2

ul
D

es
t =

 0
x2

0

ul
D

es
t =

 0
x0

0

ul
D

es
t =

 0
x0

1

ul
D

es
t =

 0
x0

2

ul
D

es
t =

 0
x2

0

ul
D

es
t =

 0
x0

0

ul
D

es
t =

 0
x0

1

ul
D

es
t =

 0
x0

2

ul
D

es
t =

 0
x2

0

System
Mailbox

Channel 1
Mailbox

Channel 0
Mainbox

Figure 5 - Use of ulDest in Channel and System Mailbox

The above figure and table below shows the use of the destination identifier ulDest.

netX DPM Interface Manual Dual-Port Memory Function • 70

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

ulDest Description

0x00000000 Packet is passed to the netX operating system rcX

0x00000001 Packet is passed to communication channel 0

0x00000002 Packet is passed to communication channel 1

0x00000003 Packet is passed to communication channel 2

0x00000004 Packet is passed to communication channel 3

0x00000020 Packet is passed to 'local' communication or system channel

Else Reserved, Do Not Use

Table 32 - Use of ulDest

A word about the channel identifier 0x00000020 (= Channel Token). The Channel Token is valid for
any mailbox. That way the application uses the same identifier for all packets without actually knowing
which mailbox or communication channel is applied. The packet stays 'local'. The system mailbox is a
little bit different, because it is used to communicate to the netX operating system rcX. The rcX has its
own range of valid commands codes and differs from the communication channels.

If there is a reply packet, the netX operating system returns it to the same mailbox the request packet
went through. Consequently, the host application has to return its reply packet to the mailbox the
request was received from.

4.1.3 Using ulSrc and ulSrcId

Generally, a netX protocol stack is addressed through its communication channel mailbox. The
example below shows how a host application addresses a protocol stack running in the context of the
netX chip. The application is identified by a number (#444 in this example). The application consists of
three processes numbered #11, #22 and #33. These processes communicate through the channel
mailbox to the AP task of a protocol stack. See following image:

Application #444

netX Protocol stack
AP Task 1

P
ro

ce
ss

 #
22

P
ro

ce
ss

 #
33

P
ro

ce
ss

 #
11

Channel
Mainbox

Figure 6 - Using ulSrc and ulSrcId

netX DPM Interface Manual Dual-Port Memory Function • 71

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Example:

This example applies to command messages imitated by a process in the context of the host
application identified by number #444. If the process #22 sends a packet through the channel mailbox
to the AP task, the packet header has to be filled in as follows:

Destination Queue Handler ulDest = 32; /* 0x20: local channel mailbox */
Source Queue Handler ulSrc = 444; /* host application */
Destination Identifier ulDestId = 0; /* not used */
Source Identifier ulSrcId = 22; /* process number */

For packets through the channel mailbox, the application uses 32 (= 0x20, Channel Token) for the
destination queue handler ulDest. The source queue handler ulSrc and the source identifier ulSrcId
are used to identify the originator of a packet. The destination identifier ulDestId can be used to
address certain resources in the protocol stack. It is not used in this example. The source queue
handler ulSrc has to be filled in. Therefore its use is mandatory; the use of ulSrcId is optional.

The netX operating system passes the request packet to the protocol stack's AP task. The protocol
stack then builds a reply to the packet and returns it to the mailbox. The application has to make sure
that the packet finds its way back to the originator (process #22 in the example).

4.1.4 How to Route rcX Packets

To route an rcX packet the source identifier ulSrcId and the source queues handler ulSrc in the packet
header hold the identification of the originating process. The router saves the original handle from
ulSrcId and ulSrc. The router uses a handle of its own choices for ulSrcId and ulSrc before it sends the
packet to the receiving process. That way the router can identify the corresponding reply packet and
matches the handle from that packet with the one stored earlier. Now the router replaces its handles
with the original handles and returns the packet to the originating process.

netX DPM Interface Manual Dual-Port Memory Function • 72

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.1.5 Client/Server Mechanism

4.1.5.1 Application as Client

The host application may send request packets to the netX firmware at any time (transition 1 2).
Depending on the protocol stack running on the netX, parallel packets are not permitted (see protocol
specific manual for details). The netX firmware sends a confirmation packet in return, signaling
success or failure (transition 3 4) while processing the request.

The host application has to register with the netX firmware in order to receive indication packets
(transition 5 6). Depending on the protocol stack, this is done either implicit (if application opens a
TCP/UDP socket) or explicit (if application wants to receive unsolicited DPV1 packets). Details on
when and how to register for certain events is described in the protocol specific manual. Depending on
the command code of the indication packet, a response packet to the netX firmware may or may not
be required (transition 7 8).

Figure 7 - Transition Chart Application as Client

 The host application sends request packets to the netX firmware.

 The netX firmware sends a confirmation packet in return.

 The host application receives indication packets from the netX firmware.

 The host application sends response packet to the netX firmware (may not be required).

 Request Confirmation

 Indication Response

Application netX

netX DPM Interface Manual Dual-Port Memory Function • 73

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.1.5.2 Application as Server

The host application has to register with the netX firmware in order to receive indication packets
(unsolicited telegrams). Depending on the protocol stack, this is done either implicit (if application
opens a TCP/UDP socket) or explicit (if application wants to receive unsolicited DPV1 packets).
Details on when and how to register for certain events is described in the protocol specific manual.

When an appropriate event occurs and the host application is registered to receive such a notification,
the netX firmware passes an indication packet through the mailbox (transition 1 2). The host
application is expected to send a response packet back to the netX firmware (transition 3 4).

Figure 8 - Transition Chart Application as Server

 The netX firmware passes an indication packet through the mailbox.

 The host application sends response packet to the netX firmware.
 Indication Response

Application netX

netX DPM Interface Manual Dual-Port Memory Function • 74

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.1.6 Transferring Fragmented Packets

The mechanism of transferring fragmented packets is used in situations, where a data block plus
packet header exceeds the size of the mailbox. The mechanism described in this section applies to
data blocks that reside in the context of a fieldbus protocol stack. It is not used to transfer files (e.g.
configuration up- or download) between a host application and the netX operating system rcX. How to
transfer files between application and netX is explained in section 4.10 Downloading Files to netX and
section 4.11 Uploading Files from netX.

Any request and response packet may be transferred in a fragmented manner without explicit mention
of it in other section of this manual or in the fieldbus related documentation. This is due to the variable
size of the mailboxes. Today for the default memory layout with its channel mailbox of almost 1600
byte, it is not very likely that packets need to be sent in a fragmented manner. But when the need
occurs (the mailbox appears to be too small and data block too big) the application on one side and
the netX firmware on the other shall be able to handle fragmented packets.

There might be an additional data header transferred in the data section tData of a fragmented packet.
This header may be transmitted more than once, depending on the implementation of the specific
protocol stack. Details of the implementation and whether or not a data header is being used, can be
found in the documentation to the protocol stack.

NOTE When the size of a data block plus packet header would fit into a mailbox or packet at once,
the fragmented packet transport mechanism shall not be used.

4.1.6.1 Extension and Identifier Field

While transferring fragmented packets, two elements of the packet header receive special attention.
For one, there is the extension field ulExt. The field extension is used for controlling fragmented
packets. The extension field indicates a single packet or a packet of a sequence (first, middle or last).
The following definitions apply to the extension field.

 NO SEQUENCED PACKET #define RCX_PACKET_SEQ_NONE 0x00000000

 FIRST PACKET OF SEQUENCE #define RCX_PACKET_SEQ_FIRST 0x00000080

 SEQUENCED PACKET #define RCX_PACKET_SEQ_MIDDLE 0x000000C0

 LAST PACKET OF SEQUENCE #define RCX_PACKET_SEQ_LAST 0x00000040

The other important field is the identifier field ulId. The identifier field is used to identify a specific
packet among others. It holds the sequence number, which gets incremented by one for every new
packet. The identifier field does not necessarily need to start with zero for a new sequence. It may hold
any value as long as it gets incremented by one for the next packet.

NOTE A data block must be sent in the order of its original sequence. Sequence numbers must not
be skipped or used twice. The firmware cannot re-assemble a data block that is out of its
original order.

netX DPM Interface Manual Dual-Port Memory Function • 75

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.1.6.2 Procedure

The sections below shows packet by packet the use of the command field ulCmd, the identifier field
ulId and the extension field ulExt from the packet header while transferring fragmented data block
between host application and netX firmware. Note that every request packet has a confirmation
packet.

Download Request, Initiated by the Host Application

In this scenario the application knows that the data packet to send is too big to fit into the one packet
at once. Hence the application sets the First Packet of Sequence bit in the extension field ulExt; the
netX firmware on the other side can expect at least one more packet. The fragmented download is
always finalized with Last Packet of Sequence set in the extension field.

Pkt App Task ulCmd ulId ulExt Remark

0 CMD X+0 F First Fragment, Request

1 CMD+1 X+0 F First Fragment, Confirmation

2 CMD X+1 M Middle Fragment, Request

3 CMD+1 X+1 M Middle Fragment, Confirmation

… … … Middle Fragment, …

n CMD X+(n/2) L Last Fragment, Request

n+1 CMD+1 X+(n/2) L Last Fragment, Confirmation

Table 33 - Download Request (CMD = download command; F = First; M = Middle; L = Last)

Upload Request, Initiated by the Host Application

In this scenario the host application requests a block of data from the netX firmware. The application
may not know the size of the data block that is going to be transferred. Hence the request packet sent
by the application indicates No Sequence in the extension field ulExt. The firmware sends a reply back
with the First Packet of Sequence bit set, indicating that there are one or more packets to come. The
fragmented upload is always finalized with Last Packet of Sequence bit set in the extension field.

Pkt App Task ulCmd ulId ulExt Remark

0 CMD X+0 N No Fragment, Request

1 CMD+1 X+0 F First Fragment, Confirmation

2 CMD X+1 M Middle Fragment, Request

3 CMD+1 X+1 M Middle Fragment, Confirmation

… … … Middle Fragment, …

n CMD X+(n/2) M Middle Fragment, Request

n+1 CMD+1 X+(n/2) L Last Fragment, Confirmation

Table 34 - Upload Request (CMD = upload command; N = None; F = First; M = Middle; L = Last)

netX DPM Interface Manual Dual-Port Memory Function • 76

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.1.6.3 Abort Fragmented Packets Request

A data block transfer should be aborted when a sequence number in the identifier field ulId is skipped
or used twice. Failure in handling the extension flags in ulExt result a sequence fault, too. In case the
receiving process runs out of memory to store the data, the Out of Memory fault code shall be used.

To abort the sequence of fragmented data blocks, the receiving or sending process may send a
packet with the packet's original command code (in this example: ulCmd = CMD, CMD is fieldbus
dependent) at any time during the process. Additionally, the length field ulLen is set to zero and the
extension field ulExt is set to indicate the last sequenced packet. In a regular sequence, the
combination of last packet bit set and zero data length is invalid.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 Destination Queue Handle

ulSrc UINT32 Source Queue Handle

ulDestId UINT32 Destination Queue Reference

ulSrcId UINT32 Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32
0xC02B0024
0xC0000010

Status
Packet out of Sequence
Out Of Memory

ulCmd UINT32 CMD Command

ulExt UINT32
0x00000040

Extension
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information

For the abort request packet, ulSta holds the error / status code. The following codes are used to
indicate a sequence or memory error, respectively.

 PACKET OUT OF SEQUENCE #define RCX_E_PACKET_OUT_OF_SEQ 0xC000000F

 OUT OF MEMORY #define RCX_E_PACKET_OUT_OF_MEMORY 0xC0000010

netX DPM Interface Manual Dual-Port Memory Function • 77

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.1.6.4 Abort Fragmented Packet Confirmation

The receiver of the abort request returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32
0

Status / Error Code
RCX_S_OK (always)

ulCmd UINT32 CMD+1 Confirmation

ulExt UINT32
0x00000040

Extension
Last Packet of Sequence

ulRout UINT32 Routing Information, Don't Care, Don't Use

The receiver returns a packet with original command code plus one (in this example: ulCmd = CMD+1,
CMD is fieldbus dependent). The length field ulLen is set to zero and the extension field ulExt is set to
indicate the last sequenced packet.

netX DPM Interface Manual Dual-Port Memory Function • 78

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.2 Input / Output Data Image
The offset address in the IO data image of each input and output point or device is set by the
SYCON.net network configuration tool or can be configured online via an application program.

Each of the inputs or outputs in the IO block can have additional information regarding its status,
indicating whether its data is valid or not. This status information field (4 bytes) is optional and can be
configured by SYCON.net or online via a network specific description table (see page 200 for details).

Depending on the implementation, an output and input data image may or may not be present.

4.2.1 Process Data Transfer Synchronization

The dual-port memory features buffered data transfer mode to ensure data consistency over the entire
process data image individually for each input and output image. Therefore, the protocol stack
maintains buffers internally that hold a copy of the process data image for each direction. Data to be
sent to the network is taken from those buffers; data to be received from the network is stored in those
buffers.

In the "controlled" mode, the protocol stack synchronizes the exchange of data between these buffers
and the process data image in the dual-port memory with the application via a handshake mechanism.
Once copied from/into the input/output area, the protocol stack gives control over the dual-port
memory to the application. When the application has finished copying, the control is given back to the
protocol stack, and so on. If no update of data happened, the protocol stack overwrites the input buffer
with data received from the network. If the application is much faster than the network cycle, it might
be possible that data in the output buffers is overwritten without ever being sent to the network.

The above handshake mechanism applies to input and output data areas that have the IN respectively
OUT flag set in their direction field; blocks with the direction field indicating IN - OUT (bi-directional)
use always the Uncontrolled, Not Buffered mode (see below).

4.2.2 Process Data Handshake Modes

The process data handshake is carried out individually for each input and output image, respectively
for each protocol stack. The protocol stack allows controlling the transfer of data independently for
inputs and outputs. The handshake cells are located in the handshake channel (see pages 64 and 48
for details). The internal buffers have the same size like the input and output data images in the dual-
port memory for the assigned memory block. The following data exchange modes are supported.

Mode Controlled by Consistency Supported by

Not Buffered No Control None Master & Slave FW

Buffered Host (Application/Driver) Yes Master & Slave FW

Table 35 - Process Data Handshake Modes

The configuration of the protocol stacks in terms of their process data handshake mode is carried out
by SYCON.net (see page 200 for details).

netX DPM Interface Manual Dual-Port Memory Function • 79

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

The following sections are intended to illustrate the procedure of transferring data from the host
application to the netX dual-port memory and vice versa. The step-by-step section shows the
mechanism in a block diagram and details the data flow. The second approach provides a different
view of the procedure and adds a time component to the mechanism. Input and output data is
transferred independently and therefore use an own pair of handshake bits.

4.2.2.1 Not Buffered, Uncontrolled Mode

For each valid bus cycle the protocol stack updates the process data in the input and output data
image in the dual-port memory. No handshake bits are evaluated and no buffers are used. The
application can read or write process data at any given time without obeying any synchronization
mechanism otherwise carried out via handshake location. This handshake mode is the simplest
method of transferring process data between the protocol stack and the application.

NOTE This mode can only guarantee data consistency over a byte.

Step-by-Step Procedure

Figure 9 - Step-by-Step: Not Buffered, Uncontrolled Mode

The protocol stack receives network data directly into the input data image and sends data to the
network from the output data image of the dual-port memory. There is no handshaking necessary and
therefore no guaranty for constancy of input or output data.

OUT
DPM

IN
DPM

Network Application

netX DPM Interface Manual Dual-Port Memory Function • 80

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Time Related View
 Output/Input Data Exchange

Figure 10 - Time Related: Not Buffered, Uncontrolled Mode

 The protocol stack constantly sends and receives data to/from the network.

 The application may copy data into output data image of the dual-port memory at any time.

 The application copies data from the input data area of the dual-port memory at any time.

 As soon as a new telegram is available from the network, the protocol stack copies it's data
directly into the input data image of the dual-port memory.

 When a new telegram has to be sent to the network, the protocol stack takes its data directly
from the output data image of the dual-port memory.

 The protocol stack sends data from the output data image. Once updated, the protocol stack
uses the new data from the buffer to send it to the network. The cycle starts over with step 1.

NOTE In case of a network fault (e.g. disconnected network cable), a netX slave firmware keeps
the last state of the input data image. As soon as the firmware detects the network fault, it
clears the Communicating flag in netX communication flags (see page 48); the input data
should not be evaluated anymore.

Application Network DPM

Data

t

netX DPM Interface Manual Dual-Port Memory Function • 81

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.2.2.2 Buffered, Controlled Mode

For each valid bus cycle the protocol stack updates the process data in the internal input buffer. When
the application toggles the appropriate input handshake bit, the protocol stack copies the data from the
internal IN buffer into the input data image of the dual-port memory. Now the application can copy data
from the dual-port memory and then give control back to the protocol stack by toggling the appropriate
input handshake bit. When the application/driver toggles the output handshake bit, the protocol stack
copies the data from the output data image of the dual-port memory into the internal buffer. From there
the data is transferred to the network. The protocol stack toggles the appropriate handshake bits back,
indicating to the application that the transfer is finished and a new data exchange cycle may start.

This mode guarantees data consistency over both input and output area.

Step-by-Step Procedure

Figure 11 - Step 1: Buffered, Controlled Mode

Step 1 The protocol stack sends data from the internal OUT buffer to the network and receives data
from the network in the internal IN buffer.

Figure 12 - Step 2: Buffered, Controlled Mode

Step 2 The application has control over the dual-port memory and exchanges data with the input
and output data images in the dual-port memory. The application then toggles the handshake bits,
giving control over the dual-port memory to the protocol stack.

OUT
DPM

IN
DPM

OUT
Buffer

IN
Buffer

Network Application

OUT
DPM

IN
DPM

OUT
Buffer

IN
Buffer

Network Application

netX DPM Interface Manual Dual-Port Memory Function • 82

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Figure 13 - Step 3: Buffered, Controlled Mode

Step 3 The protocol stack copies the content of the output data image into the internal OUT buffer
and from the IN buffer to the input data image.

Figure 14 - Step 4: Buffered, Controlled Mode

Step 4 The protocol stack toggles the handshake bits, giving control back to the application. Now
the protocol stack uses the new output data image from the OUT buffer to send it to the network and
receives data into the internal IN buffer. The cycle starts over.

Time Related View
 Output Data Exchange

Figure 15 - Time Related: Buffered, Controlled, Output Data

 The protocol stack constantly transmits data from the buffer to the network.

OUT
DPM

IN
DPM

OUT
Buffer

IN
Buffer

Network Application

OUT
DPM

IN
DPM

OUT
Buffer

IN
Buffer

Network Application

Application Network DPM Buffer

Data

Handshake

t

netX DPM Interface Manual Dual-Port Memory Function • 83

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 The application has control over the dual-port memory and can copy data to the output data
image.

 The application then toggles the handshake bits, giving control over the dual-port memory to the
protocol stack.

 The protocol stack copies the content of the output data image into the internal OUT buffer.

 The protocol stack toggles the handshake bits, giving control back to the application.

 Once updated, the protocol stack uses the new data from the internal buffer and sends it to the
network. The cycle starts over with step 1.

 Input Data Exchange

Figure 16 - Time Related: Buffered, Controlled, Input Data

 The protocol stack constantly receives data from the network into the buffer.

 The application has control over the dual-port memory input data image and exchanges data
with the input data image in the dual-port memory.

 The application then toggles the handshake bits, giving control over the dual-port memory to the
netX protocol stack.

 The protocol stack copies the latest content of the internal IN buffer to the input data image of
the dual-port memory.

 The protocol stack then toggles the handshake bits, giving control back to the application.

 The protocol stack receives data from the network into the buffer. The cycle starts over with the
first step.

NOTE In case of a network fault (e.g. disconnected network cable), a slave firmware keeps the last
state of the input data image. As soon as the firmware detects the network fault, it clears the
Communicating flag in netX communication flags (see page 48); the input data should not be
evaluated anymore.

Application Network DPM Buffer

Data

Handshake

t

netX DPM Interface Manual Dual-Port Memory Function • 84

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.3 Input/Output Data Status
The input / output data status is defined, but not supported yet.

4.3.1 About Input/Output Data Status

Some fieldbus systems require additional information regarding the state of input and output process
data (PROFINET for example). The status field contains information whether the data is valid and if
the data is sent / received in good condition. The status information field precedes the data field. If
present, the size of the status information field is 4 byte (UINT32) or one byte (UINT8).
The status field is located in front of the I/O data memory location. Therefore, it is located before the
actual offset address of the I/O data.

The I/O status field is a double word (UINT32), a byte (UINT8) or nonexistent (configurable).

The size of the I/O status field is obtained by the application via the mailbox interface.

The size of the I/O status field can be changed only by downloading a new configuration.

The status field may be present for the input and output data area. It is called Provider Status.

The provider status indicates whether the data is valid (Good, Bad).

Both input and output data have a provider status field.

A status field is present internally in the protocol stack for output data. It is called Consumer Status.

The consumer status returns a feedback whether or not the data could be processed.

The consumer status is maintained by the protocol stack or controlled via the packet interface.

The least significant byte of the status is fieldbus independent. If present, the remaining 3 bytes can
be used fieldbus dependent. Therefore, it is described in a separate manual.

The following common status flags are defined:

 DATA STATE (Good, Bad) #define RCX_IODS_DATA_STATE_GOOD 0x0080

 PROVIDER STATE (Run, Stop) #define RCX_IODS_PROVIDER_RUN 0x0040

 GENERATED (Locally, Remote) #define RCX_IODS_GENERATED_LOCALLY 0x0020

 FIELDBUS MASK #define RCX_IODS_FIELDBUS_MASK 0x00F0

 Others are reserved.

netX DPM Interface Manual Dual-Port Memory Function • 85

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.3.2 Provider State

4.3.2.1 Input Data Status

For master implementations, the input data status field indicates whether the data following this field is
valid. The status is either transferred by the originator of the data or generated locally in the netX
firmware.

If the Generated flag is set to True (= generated locally), the master firmware set the status to Good
for slaves that are healthy and available on the network; otherwise it is set to Bad. If the Generated
flag is set to False (= generated remotely), the status information shown in the field is generated and
transmitted by the originator of the data (for instance PROFINET supports this feature). For slave
implementations if generated locally (Generated flag is True) the data status is set to Good, if the
slave has a faultless connection to the network master.

The lower nibble of the data status field is specific to the underlying fieldbus and therefore described in
a separate manual.

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 Fieldbus Specific

 Reserved

 Generated (1 = Locally, 0 = Remote)

 Provider State (1 = Run, 0 = Stop)

 Data State (1 = Good, 0 = Bad)

unused, set to zero

Table 36 - Input Data Status

4.3.2.2 Output Data Status

The output status data field indicates whether the data following this field is valid. The status flags are
generated by the application. The application indicates its own status and therefore this field is also a
provider status. The choices are Good or Bad for the data state flag and Run or Stop for the provider
state flag.

The lower nibble of the data status field is specific to the underlying fieldbus and therefore described in
a separate manual.

31 30 … 12 11 10 9 8 7 6 5 4 3 2 1 0

 Fieldbus Specific

 Reserved

 Provider State (1 = Run, 0 = Stop)

 Data State (1 = Good, 0 = Bad)

unused, set to zero

Table 37 - Output Data Status

4.3.3 Consumer State

Not supported yet.

netX DPM Interface Manual Dual-Port Memory Function • 86

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.4 Start / Stop Communication

4.4.1 Controlled or Automatic Start

The firmware has the option to start network communication after power up or reset automatically.
Whether or not the network communication will be started automatically is configurable. However, the
preferred option is called Controlled start of communication. It forces the channel firmware to wait for
the host application to allow network connection being opened by setting the Bus On flag in the
Application Change of State register in the channel's control block (see page 52). Consequently, the
protocol stack will not allow opening network connections and does not exchange any cyclic process
data, until the Bus On flag is set.

The second option enables the channel firmware to open network connections automatically without
interacting with the host application. It is called Automatic start of communication. This method is not
recommended, because the host application has no control over the network connection status. In this
case the Bus On flag is not evaluated.

NOTE For the default dual-port memory layout, the Controlled start of communication is the default
method used.

4.4.2 Start / Stop Communication through Dual-Port Memory

4.4.2.1 (Re-)Start Communication

To allow the protocol stack to open connections or to allow connections to be opened, the application
sets the Bus On flag in the Application Change of State register in the channel's control block (see
page 52). When firmware has established a cyclic connection to at least one network mode, the
channel firmware sets the Communicating flag in the netX Communication Flags register (see page
48).

4.4.2.2 Stop Communication

To force the channel firmware to disable all network connections, the host application clears the Bus
On flag in the Application Change of State register in the channel's control block (see page 52). The
firmware then closes all open network connections. A slave protocol stack would reject attempts to re-
open a connection, until the application allows opening network connections again (Bus On flag is
set). When all connections are closed, the channel firmware clears the Communicating flag in the netX
Communication Flags register on page 48.

netX DPM Interface Manual Dual-Port Memory Function • 87

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.4.3 Start / Stop Communication through Packets

The command is used to force the protocol stack to start or stop network communication. To do so, a
request packet is passed through the channel mailbox to the protocol stack. Starting and stopping
network communication effects the Bus On flag (in Communication Change of State register as
described on page 52.

4.4.3.1 Start / Stop Communication Request

The application uses the following packet in order to start or stop network communication. The packet
is send through the channel mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F30

Command
Start/Stop Communication

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulParam UINT32
0x00000001
0x00000002

Parameter
Start Communication
Stop communication

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 START / STOP COMMUNICATION REQUEST
 #define RCX_START_STOP_COMM_REQ 0x00002F30

Packet Structure Reference
typedef struct RCX_START_STOP_COMM_REQ_DATA_Ttag
{
 UINT32 ulParam; /* start/stop communication */
} RCX_START_STOP_COMM_REQ_DATA_T;

typedef struct RCX_START_STOP_COMM_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_START_STOP_COMM_REQ_DATA_T tData; /* packet data */
} RCX_START_STOP_COMM_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 88

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.4.3.2 Start / Stop Communication Confirmation

The firmware returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F31

Confirmation
Start / Stop Communication

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 START / STOP COMMUNICATION CONFIRMATION

 #define RCX_START_STOP_COMM_CNF RCX_START_STOP_COMM_REQ+1

Packet Structure Reference
typedef struct RCX_START_STOP_COMM_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_START_STOP_COMM_CNF_T;

Data Field

There is no data field returned in the start / stop confirmation packet.

netX DPM Interface Manual Dual-Port Memory Function • 89

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.5 Lock Configuration
The lock configuration mechanism can be seen as the equivalent to the key switch on the front of a
PLC module, which puts the PLC into Run or Stop mode. Only in Stop mode, the PLC allows re-
configuration. In the same manner, the netX firmware rejects attempts delete, alter, overwrite or
otherwise change the to current configuration settings of a communication channel when the
Configuration Locked flag is set. Locking and unlocking the configuration of a channel firmware can be
achieved through either direct access to the dual-port memory or through the channel mailbox.

Exceptions for certain fieldbuses are explicity mentioned in the documentation of the protocol stack.

4.5.1 Lock Configuration through Dual-Port Memory

If the host application whishes to lock the configuration settings, it sets the Lock Configuration flag in
the control block (see page 52). As a result, the channel firmware sets the Configuration Locked flag in
the status block (see page 54), indicating that the current configuration settings are locked. To unlock
a configuration the application has to clear the Lock Configuration flag in the control block.

4.5.2 Lock Configuration through Packets

The packet below is used to lock or unlock a configuration. The request packet is passed through the
channel mailbox only. Locking and unlocking a configuration through this packet has an effect to the
Configuration Locked flag in the control block (see page 52). The protocol stack modifies this flag in
order to signal its current state.

netX DPM Interface Manual Dual-Port Memory Function • 90

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.5.2.1 Lock / Unlock Configuration Request

The application uses the following packet in order to lock or unlock the current configuration. The
packet is send through the channel mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F32

Command
Lock/Unlock Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulParam UINT32
0x00000001
0x00000002

Parameter
Lock Configuration
Unlock Configuration

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 LOCK / UNLOCK CONFIGURATION REQUEST
 #define RCX_LOCK_UNLOCK_CONFIG_REQ 0x00002F32

Packet Structure Reference
typedef struct RCX_LOCK_UNLOCK_CONFIG_REQ_DATA_Ttag
{
 UINT32 ulParam; /* lock/unlock parameter */
} RCX_LOCK_UNLOCK_CONFIG_REQ_DATA_T;

typedef struct RCX_LOCK_UNLOCK_CONFIG_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_LOCK_UNLOCK_CONFIG_REQ_DATA_T tData; /* packet data */
} RCX_LOCK_UNLOCK_CONFIG_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 91

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.5.2.2 Lock / Unlock Configuration Confirmation

The channel firmware returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F33

Confirmation
Lock/Unlock Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 LOCK / UNLOCK CONFIGURATION CONFIRMATION

 #define RCX_LOCK_UNLOCK_CONFIG_CNF RCX_LOCK_UNLOCK_CONFIG_REQ+1

Packet Structure Reference
typedef struct RCX_LOCK_UNLOCK_CONFIG_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_LOCK_UNLOCK_CONFIG_CNF_T;

Data Field

There is no data field returned in the lock / unlock confirmation packet.

netX DPM Interface Manual Dual-Port Memory Function • 92

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.6 Determining DPM Layout
From an application standpoint, the logical layout of the dual-port memory can be determined by
evaluating the content of system channel information block (see page 28). This block holds information
about the remaining seven channels. Among other things, the channel information block includes
length and type of the channels (or application) in the dual-port memory. That way the application is
able to gather information regarding the physical layout given by the firmware.

The content of a channel (or the logical layout) can be IO process data image, mailboxes, information
regarding network status and other things. This information is obtained from the netX firmware using
non-cyclic messages via the mailbox system.

The layout of the dual-port memory may change when the configurations changes. For example, if
more slaves are added to the configuration, usually the length of the IO process data image increases,
too. With the new size of the IO images, the following blocks and channels may be relocated.

4.6.1 Default Memory Layout

The protocol stack will set the default memory map flag in the ulSystemCOS variable in system status
block in 44, indicating that the default memory layout is used (see page 47). Then its total size is 16
KByte and not variable like with the dynamic approach. System and handshake channel are included
in the size of 16 KByte.

4.6.2 Obtaining Logical Layout

To obtain the logical layout of a channel, the application has to send a message to the firmware
through the system block's mailbox area. The protocol stack replies with one or more messages
containing the description of the channel. Each memory area of the channel has an offset address and
an identifier to indicate the type of area. The type can be one of the following: IO process data image,
send/receive mailbox, parameter, status or port specific area.

netX DPM Interface Manual Dual-Port Memory Function • 93

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.6.2.1 Channel Definition

The following structure is located in the system channel information block (see page 35). It is an
example for the communication channel 1. The structure indicates whether the channel is present. If
the channel type is NOT AVAILABLE, the channel is not present and no information from this structure
should be evaluated.

Channel Structure taken from System Channel Information Block

Address Channel Area Structure

 Data Type Description

0x0060 UINT8 Channel Type = COMMUNICATION (see page 37)

 UINT8 Channel ID, Channel Number

 UINT8 Size / Position of Handshake Cells

 UINT8 Total Number of Blocks in this Channel

 UINT32 Size of Channel in Bytes

 UINT16 Communication Class (Master, Slave…)

 UINT16 Protocoll Class (PROFIBUS, PROFINET…)

 UINT16 Protocoll Conformance Class (DPV1, DPV2…)

… 0x006F

Communication
Channel 1

UINT8[2] Reserved

Table 38 - Block Definition (Example for Communication Channel 1)

4.6.3 Mechanism

4.6.3.1 Determining Memory Block Number

Evaluating the structure outlined on page 35, the application generates a request message through
the system block to obtain more information regarding the structure of the channel. Using the position
of the structure in the system channel information block, the application knows which of the channels
are available. The first channel following the handshake channel is the communication channel 0; the
next entry represents the second communication channel, and so on.

4.6.3.2 Obtain Area or Block Information

The application creates further messages through the system channel mailbox with the channel ID
number bChannelId from channel information block (see page 35) using the command message from
below. The netX firmware returns a confirmation message with the number of areas or blocks present
in the given memory block.

With the number of blocks, the application is able to create another message to the netX firmware
through the system block mailbox. The netX firmware returns a confirmation message with the identity,
type, start offset and length of the block. In addition, the reply message contains the data direction of
the block (host system to netX or netX to host system) as well as the transfer mode (DPM or DMA).

netX DPM Interface Manual Dual-Port Memory Function • 94

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.6.3.3 Get Block Information Request

The following request message is sent to the netX firmware to obtain block information. The message
is sent through the system mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 8 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification As Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EF8

Command
Get Block Information Request

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulAreaIndex UINT32 0 … 7 Area Index (see below)

 ulSubblock
Index UINT32 0 … 0xFFFFFFFF Sub Block Index (see below)

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 GET BLOCK INFORMATION REQUEST
 #define RCX_DPM_GET_BLOCK_INFO_REQ 0x00001EF8

Packet Structure Reference
typedef struct RCX_DPM_GET_BLOCK_INFO_REQ_DATA_Ttag
{
 UINT32 ulAreaIndex; /* area index */
 UINT32 ulSubblockIndex; /* sub block index */
} RCX_DPM_GET_BLOCK_INFO_REQ_DATA_T;

typedef struct RCX_DPM_GET_BLOCK_INFO_REQ_T
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_DPM_GET_BLOCK_INFO_REQ_DATA_T tData; /* packet data */
} RCX_DPM_GET_BLOCK_INFO_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 95

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Area Index

This field holds the index of the channel. The system channel is identified by an index number of 0; the
handshake has index 1, the first communication channel has index 2 and so on.

Sub Block Index

The sub block index field identifies each of the blocks that reside in the dual-port memory interface for
the specified communication channel (communication channel area, see above). The sub block index
ranges from 0 to bNumberOfBlocks from the Channel Information Block field on page 35.

netX DPM Interface Manual Dual-Port Memory Function • 96

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.6.3.4 Get Block Information Confirmation

The firmware replies with the following message.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
28
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification As Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EF9

Confirmation
Get Block Information Confirmation

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulAreaIndex UINT32 0, 1, … 7 Area Index (Channel Number)

 ulSubblock
Index UINT32 0 … 0xFFFFFFFF Number of Sub Blocks (see below)

 ulType UINT32 0 … 0x0009 Type of Sub Block (see below)

 ulOffset UINT32 0 … 0xFFFFFFFF Offset of Sub Block within the Area

 ulSize UINT32 0 … 65535 Size of Sub Block (see below)

 usFlags UINT16 0 ... 0x0023 Flags of Sub Block (see below)

 usHandshake
Mode UINT16 0 … 0x0004 Handshake Mode (see below)

 usHandshake
Bit UINT16 0 … 0x00FF Bit Position in the Handshake Register

 usReserved UINT16 0 Reserved

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 GET BLOCK INFORMATION CONFIRMATION
 #define RCX_DPM_GET_BLOCK_INFO_CNF RCX_DPM_GET_BLOCK_INFO_REQ+1

netX DPM Interface Manual Dual-Port Memory Function • 97

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_DPM_GET_BLOCK_INFO_CNF_DATA_Ttag
{
 UINT32 ulAreaIndex; /* area index */
 UINT32 ulSubblockIndex; /* number of sub block */
 UINT32 ulType; /* type of sub block */
 UINT32 ulOffset; /* offset of this sub block within the area */
 UINT32 ulSize; /* size of the sub block */
 UINT16 usFlags; /* flags of the sub block */
 UINT16 usHandshakeMode; /* handshake mode */
 UINT16 usHandshakeBit; /* bit position in the handshake register */
 UINT16 usReserved; /* reserved */
} RCX_DPM_GET_BLOCK_INFO_CNF_DATA_T;

typedef struct RCX_DPM_GET_BLOCK_INFO_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_DPM_GET_BLOCK_INFO_CNF_DATA tData; /* packet data */
} RCX_DPM_GET_BLOCK_INFO_CNF_T;

Sub Block Index

This field defines the channel number that the block belongs to. The system channel has the number
0; the handshake channel has the number 1 and so on (max. 7).

Sub Block Index

This field holds the number of the block.

Sub Block Type

This field is used to identify the type of sub block. The following types are defined.

 UNDEFINED #define RCX_BLOCK_UNDEFINED 0x0000

 UNKNOWN #define RCX_BLOCK_UNKNOWN 0x0001

 PROCESS DATA IMAGE #define RCX_BLOCK_DATA_IMAGE 0x0002

 HIGH PRIORITY DATA IMAGE #define RCX_BLOCK_DATA_IMAGE_HI_PRIO 0x0003

 MAILBOX #define RCX_BLOCK_MAILBOX 0x0004

 CONTROL #define RCX_BLOCK_CNTRL_PARAM 0x0005

 COMMON STATUS #define RCX_BLOCK_COMMON_STATE 0x0006

 EXTENDED STATUS #define RCX_BLOCK_EXTENDED_STATE 0x0007

 USER #define RCX_BLOCK_USER 0x0008

 RESERVED #define RCX_BLOCK_RESERVED 0x0009

 Others are reserved 0x000A … 0xFFFF

Offset

This field holds the offset of the block based on the start offset of the channel.

netX DPM Interface Manual Dual-Port Memory Function • 98

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Size

The size field holds the length of the block section in multiples of bytes.

Flags

The flags field holds information regarding the data transfer direction from the view point of the
application. The following flags are defined.

 DIRECTION MASK #define RCX_DIRECTION_MASK 0x000F

 UNDEFINED #define RCX_DIRECTION_UNDEFINED 0x0000

 IN (netX to Host System) #define RCX_DIRECTION_IN 0x0001

 OUT (Host System to netX) #define RCX_DIRECTION_OUT 0x0002

 IN - OUT (Bi-Directional) #define RCX_DIRECTION_IN_OUT 0x0003

 Others are reserved

The transmission type field in the flags location holds the type of how to exchange data with this sub
block. The choices are:

 TRANSMISSION MASK #define RCX_TRANSMISSION_TYPE_MASK 0x00F0

 UNDEFINED #define RCX_TRANSMISSION_TYPE_UNDEFINED 0x0000

 DPM (Dual-Port Memory) #define RCX_TRANSMISSION_TYPE_DPM 0x0010

 DMA (Direct Memory Access) #define RCX_TRANSMISSION_TYPE_DMA 0x0020

 Others are reserved

Handshake Mode

The handshake mode is defined only for IO data images. The handshake modes are the same as
defined on page 78.

 IO MODE MASK #define RCX_IO_MODE_MASK 0x000F

 UNKNOWN #define RCX_IO_MODE_UNKNOWN 0x0000

 UNCONTROLLED #define RCX_IO_MODE_UNCONTROLLED 0x0003

 BUFFERED, HOST CONTROLLED #define RCX_IO_MODE_BUFF_HST_CTRL 0x0004

 Others are reserved 0x0001, 0x0002, 0x0005 … 0xFFFF

Handshake Position

The handshake cells either can be in the handshake channel or (in the future and therefore not
supported yet) they can be located at the beginning of each channel. See pages 64 and 48 for details.

NOTE Not all combinations of values from this structure are allowed. Some are even contradictory
and do not make sense.

netX DPM Interface Manual Dual-Port Memory Function • 99

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.7 Identifying netX Hardware
The netX chip on Hilscher products use a Security EEPROM to store certain hardware and product
related information that helps to identify a netX hardware. The netX operating system reads the
Security Memory during power-up reset and copies certain information into the dual-port memory to
the system information block. For example, a configuration tool like SYCON.net can evaluate the
information and use them to decide whether a firmware file should be downloaded. If the information in
the firmware file does not match the information read from the dual-port memory, the attempt to
download could be rejected.

The following fields are relevant to identify a netX hardware:
 Device Number, Device Identification

 Serial Number

 Hardware Assembly Options

 Manufacturer

 Production Date

 License Code

 Device Class

4.7.1 Security Memory

The Security Memory is divided into five zones total. Zones 1, 2, and 3 are readable and writeable by
a user application; zone 0 and the configuration zone are neither readable nor writable. Zones 1, 2
and 3 have each 32 bytes.

Zone 0 is encrypted and contains netX related hardware features (serial and device number for
example) and license information. Zone 0 is neither readable nor writable.

Zone 1 is used for general hardware configuration settings like Ethernet MAC address and SDRAM
timing parameter. Zone 1 is readable and writeable.

Zone 2 is used for PCI configuration and operating system parameter. Zone 2 is readable and
writeable.

Zone 3 is fully under control of a user application running on the netX to store its data, if applicable.
Zone 3 is readable and writeable.

The Configuration Zone holds entries that are predefined by the manufacturer of the EEPROM. This
zone is written only during production. The Configuration Zone is neither readable nor writable.

NOTE Usually it is not necessary to write to zones 1 or 2 nor is it recommended. Changes can
cause memory access faults, configuration or communication problems!

Zones 1 and 2 of the Security Memory are protected by a checksum (see page 105 for details).

Packets to read and write the Security Memory are passed through the System Mailbox (see below).

netX DPM Interface Manual Dual-Port Memory Function • 100

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.7.1.1 Security Memory Read Request

An application uses the following packet in order to read from the Security EEPROM. The packet is
send through the system mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EBC

Command
Read Security EEPROM

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulZoneId UINT32 0x00000001
0x00000002
0x00000003

Zone Identifier
Zone 1
Zone 2
Zone 3

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 READ SECURITY EEPROM REQUEST
 #define RCX_SECURITY_EEPROM_READ_REQ 0x00001EBC

 ZONE 1 #define RCX_SECURITY_EEPROM_ZONE_1 0x00000001

 ZONE 2 #define RCX_SECURITY_EEPROM_ZONE_2 0x00000002

 ZONE 3 #define RCX_SECURITY_EEPROM_ZONE_3 0x00000003

Packet Structure Reference
typedef struct RCX_SECURITY_EEPROM_READ_REQ_DATA_Ttag
{
 UINT32 ulZoneId; /* zone identifier */
} RCX_SECURITY_EEPROM_READ_REQ_DATA_T;

typedef struct RCX_SECURITY_EEPROM_READ_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_SECURITY_EEPROM_READ_REQ_DATA_T tData; /* packet data */
} RCX_SECURITY_EEPROM_READ_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 101

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.7.1.2 Security Memory Read Confirmation

The netX operating system returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
n
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EBD

Confirmation
Read Security EEPROM

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

abZoneData[n] UINT8 0 … 0xFF

Data from Zone X (X equal to 1, 2 or 3 (for
Configuration Zone)); Size is n

 READ SECURITY EEPROM CONFIRMATION
#define RCX_SECURITY_EEPROM_READ_CNF RCX_SECURITY_EEPROM_READ_REQ+1

Packet Structure Reference
typedef struct RCX_SECURITY_EEPROM_READ_CNF_DATA_Ttag
{
 UINT8 abZoneData[32]; /* zone data */
} RCX_SECURITY_EEPROM_READ_CNF_DATA_T;

typedef struct RCX_SECURITY_EEPROM_READ_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_SECURITY_EEPROM_READ_CNF_DATA_T tData; /* packet data */
} RCX_SECURITY_EEPROM_READ_CNF_T;

Zone Data

The zone data field holds data that is returned from Zone X (X equal to 1, 2 or 3).

netX DPM Interface Manual Dual-Port Memory Function • 102

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.7.1.3 Security Memory Write Request

An application uses the following packet in order to write to the Security EEPROM. The packet is sent
through the system mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4+n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EBE

Command
Write Security EEPROM

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulZoneId UINT32 0x00000001
0x00000002
0x00000003

Zone Identifier
Zone 1
Zone 2
Zone 3

abZoneData[n] UINT8 0 ... 0xFF Data for Zone X (X equal to 1, 2 or 3);

Size is 32

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 WRITE SECURITY EEPROM REQUEST
 #define RCX_SECURITY_EEPROM_WRITE_REQ 0x00001EBE

 ZONE 1 #define RCX_SECURITY_EEPROM_ZONE_1 0x00000001

 ZONE 2 #define RCX_SECURITY_EEPROM_ZONE_2 0x00000002

 ZONE 3 #define RCX_SECURITY_EEPROM_ZONE_3 0x00000003

The configuration zone and zone 0 are neither readable nor writable.

netX DPM Interface Manual Dual-Port Memory Function • 103

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_SECURITY_EEPROM_WRITE_REQ_DATA_Ttag
{
 UINT32 ulZoneId; /* zone ID, see RCX_SECURITY_EEPROM_ZONE_x */
 UINT8 abZoneData[32]; /* zone data */
} RCX_SECURITY_EEPROM_WRITE_REQ_DATA_T;

typedef struct RCX_SECURITY_EEPROM_WRITE_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_SECURITY_EEPROM_WRITE_REQ_DATA_T tData; /* packet data */
} RCX_SECURITY_EEPROM_WRITE_REQ_T;

4.7.1.4 Security Memory Write Confirmation

The netX operating system returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EBF

Confirmation
Write Security EEPROM

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 WRITE SECURITY EEPROM CONFIRMATION
#define RCX_SECURITY_EEPROM_WRITE_CNF RCX_SECURITY_EEPROM_WRITE_REQ+1

Packet Structure Reference
typedef struct RCX_SECURITY_EEPROM_WRITE_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_SECURITY_EEPROM_WRITE_CNF_T;

Data Field

There is no data field returned in the write security EEPROM confirmation packet.

netX DPM Interface Manual Dual-Port Memory Function • 104

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.7.1.5 Security Memory Zones

Zone 1 - Hardware Configuration

Offset Type Name Description

0x00 UINT8[6] MacAddress Ethernet Medium Access Address

0x06 UINT32 SdramGeneralCtrl SDRAM control register value

0x0A UINT32 SdramTimingCtrl SDRAM timing register value

0x0E UINT8 SdramSizeExp SDRAM size in Mbytes

0x0F UINT16[4] HwOptions[4] Hardware Assembly Option

0x17 UINT8 BootOption Boot Option

0x18 UINT8[6] Reserved[6] Reserved (6 Bytes)

0x1E UINT8 Zone1Revision Revision Structure of Zone 1

0x1F UINT8 Zone1Checksum Checksum of Byte 0 to 30

Table 39 - Hardware Configuration (Zone 1)

Zone 2 - PCI System and OS Settings

Offset Type Name Description

0x00 UINT16 PciVendorID

0x02 UINT16 PciDeviceID

0x04 UINT8 PciSubClassCode

0x05 UINT8 PciClassCode

0x06 UINT16 PciSubsystemVendorID

0x08 UINT16 PciSubsystemDeviceID

0x0A UINT24 PciSizeTarget

0x0D UINT8 PciSizeIO

0x0E UINT24 PciSizeROM

PCI Settings

0x11 UINT8 Reserved

0x12 UINT8[12] OsSettings[12] OS Related Information

0x1E UINT8 Zone2Revision Revision Structure of Zone 2

0x1F UINT8 Zone2Checksum Checksum of Byte 0 to 30

Table 40 - PCI System and OS Setting (Zone 2)

netX DPM Interface Manual Dual-Port Memory Function • 105

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Zone 3 - User Specific Zone

Offset Type Name Description

0-31 UINT8[32] (User Specific) Reserved, 32 Byte

Table 41 - User Specific Zone (Zone 3)

Memory Zones Structure Reference
typedef struct RCX_SECURITY_MEMORY_ZONE1_Ttag
{
 UINT8 MacAddress[6]; /* Ethernet medium access address */
 UINT32 SdramGeneralCtrl; /* SDRAM control register value */
 UINT32 SdramTimingCtrl; /* SDRAM timing register value */
 UINT8 SdramSizeExp; /* SDRAM size in Mbytes */
 UINT16 HwOptions[4]; /* hardware assembly option */
 UINT8 BootOption; /* boot option */
 UINT8 Reserved[6]; /* reserved (6 bytes) */
 UINT8 Zone1Revision; /* revision structure of zone 1 */
 UINT8 Zone1Checksum; /* checksum of byte 0 to 30 */
} RCX_SECURITY_MEMORY_ZONE1_T;

typedef struct RCX_SECURITY_MEMORY_ZONE2_Ttag
{
 UINT16 PciVendorID; /* PCI settings */
 UINT16 PciDeviceID; /* PCI settings */
 UINT8 PciSubClassCode; /* PCI settings */
 UINT8 PciClassCode; /* PCI settings */
 UINT16 PciSubsystemVendorID; /* PCI settings */
 UINT16 PciSubsystemDeviceID; /* PCI settings */
 UINT8 PciSizeTarget[3]; /* PCI settings */
 UINT8 PciSizeIO; /* PCI settings */
 UINT8 PciSizeROM[3]; /* PCI settings */
 UINT8 Reserved;
 UINT8 OsSettings[12]; /* OS Related Information */
 UINT8 Zone2Revision; /* Revision Structure of Zone 2 */
 UINT8 Zone2Checksum; /* Checksum of Byte 0 to 30 */
} RCX_SECURITY_MEMORY_ZONE2_T;

typedef struct RCX_SECURITY_MEMORY_ZONE3_Ttag
{
 UINT8 UserSpecific[32]; /* user specific area */
} RCX_SECURITY_MEMORY_ZONE3_T;

4.7.1.6 Checksum

Zones 0, 1 and 2 of the Security Memory are protected by a checksum. The netX operating system
provides functions that automatically calculate the checksum when the zones 1 and 2 are written. So
in a packet to write these zones the checksum field is set to zero. The packet to read these zones
returns the checksum stored in the Security Memory.

netX DPM Interface Manual Dual-Port Memory Function • 106

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.7.1.7 Dual-Port Memory Default Values

In case the Security Memory is not found or provides inconsistent data, the netX operating system
copies the following default values into the system information block (see page 28).

 Device Number, Device Identification Set to zero

 Serial Number Set to zero

 Hardware Assembly Options Set to NOT AVAILABLE

 Manufacturer Set to UNDEFINED

 Production Date Set to zero for both, production year and week

 License Code Set to zero

 Device Class Set to UNDEFINED

4.7.2 Identifying netX Hardware through Packets

The command returns the device number, hardware assembly options, serial number and revision
information of a netX hardware. The request packet is passed through the system mailbox only.

4.7.2.1 Identify Hardware Request

The application uses the following packet in order to identify netX hardware. The packet is send
through the system mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EB8

Command
Identify Hardware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 IDENTIFY FIRMWARE REQUEST
 #define RCX_HW_IDENTIFY_REQ 0x00001EB8

netX DPM Interface Manual Dual-Port Memory Function • 107

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_HW_IDENTIFY_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_HW_IDENTIFY_REQ_T;

4.7.2.2 Identify Hardware Confirmation

The channel firmware returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
88
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EB9

Confirmation
Identify Hardware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulDevice
Number UINT32 0 … 0xFFFFFFFF

Device Number
Device Number / Identification (see page 29)

 ulSerial
Number UINT32 0 … 0xFFFFFFFF

Serial Number
Serial Number (see page 29)

 ausHw
Options[4] UINT16 0 … 0xFFFF

Hardware Options
Hardware Assembly Option (see page 29)

usDeviceClass UINT16 0 … 0xFFFF

Device Class
netX Device Class (see page 33)

bHwRevision UINT8 0 … 0xFF

Hardware Revision
Hardware Revision Index (see page 34)

 bHw
Compatibility UINT8 0 … 0xFF

Hardware Compatibility
Hardware Compatibility Index (see page 34)

ulBootType UINT32 0 … 6

Hardware Boot Type
See below

 HARDWARE IDENTIFY CONFIRMATION

 #define RCX_HW_IDENTIFY_CNF RCX_HW_IDENTIFY_REQ+1

netX DPM Interface Manual Dual-Port Memory Function • 108

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_HW_IDENTIFY_CNF_DATA_Ttag
{
 UINT32 ulDeviceNumber; /* device number / identification */
 UINT32 ulSerialNumber; /* serial number */
 UINT16 ausHwOptions[4]; /* hardware options */
 UINT16 usDeviceClass; /* device class */
 UINT8 bHwRevision; /* hardware revision */
 UINT8 bHwCompatibility; /* hardware compatibility */
} RCX_HW_IDENTIFY_CNF_DATA_T;

typedef struct RCX_HW_IDENTIFY_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_HW_IDENTIFY_CNF_DATA_T tData; /* packet data */
} RCX_HW_IDENTIFY_CNF_T;

The structure above is returned, if ulSta is RCX_S_OK. Otherwise, no structure is returned.

Hardware Boot Type

This field indicates how the netX operating system was started. It is more or less for informational
purposes only.

 PARALLEL FLASH (SRAM Bus) #define RCX_BOOT_TYPE_PFLASH_SRAMBUS 0x00000000

 PARALLEL FLASH (Extension Bus)
 #define RCX_BOOT_TYPE_PFLASH_EXTBUS 0x00000001

 DUAL-PORT MEMORY #define RCX_BOOT_TYPE_DUALPORT 0x00000002

 PCI INTERFACE #define RCX_BOOT_TYPE_PCI 0x00000003

 MULTIMEDIA CARD #define RCX_BOOT_TYPE_MMC 0x00000004

 I²C BUS #define RCX_BOOT_TYPE_I2C 0x00000005

 SERIAL FLASH #define RCX_BOOT_TYPE_SFLASH 0x00000006

 Others are reserved 0x00000007 through 0xFFFFFFFF

netX DPM Interface Manual Dual-Port Memory Function • 109

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.7.2.3 License Information Request

The application uses the following packet in order to obtain license information from the netX firmware.
The packet is send through the system mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EF4

Command
License Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 OBTAIN LICENSE INFORMATION REQUEST
 #define RCX_HW_LICENSE_INFO_REQ 0x00001EF4

Packet Structure Reference
typedef struct RCX_HW_LICENSE_INFO_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_HW_LICENSE_INFO_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 110

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.7.2.4 License Information Confirmation

The channel firmware returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
12
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EF5

Confirmation
License Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulLicense
Flags1 UINT32 0 … 0xFFFFFFFF

License Code
License Flags 1

 ulLicense
Flags2 UINT32 0 … 0xFFFFFFFF

License Code
License Flags 2

 usNetx
LicenseID UINT16 0 … 0xFFFF

License Code
netX License Identification

 usNetxLicense
Flags UINT16 0 … 0xFFFF

License Code
netX License Flags

 OBTAIN LICENSE INFORMATION CONFIRMATION

 #define RCX_HW_LICENSE_INFO_CNF RCX_HW_LICENSE_INFO_REQ+1

netX DPM Interface Manual Dual-Port Memory Function • 111

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_HW_LICENSE_INFO_CNF_DATA_Ttag
{
 UINT32 ulLicenseFlags1; /* License Flags 1 */
 UINT32 ulLicenseFlags2; /* License Flags 2 */
 UINT16 usNetxLicenseID; /* License ID */
 UINT16 usNetxLicenseFlags; /* License Flags */
} RCX_HW_LICENSE_INFO_CNF_DATA_T;

typedef struct RCX_HW_LICENSE_INFO_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_HW_LICENSE_INFO_CNF_DATA_T tData; /* packet data */
} RCX_HW_LICENSE_INFO_CNF_T;

License Code

These fields contain licensing information that is available for the netX chip. All four fields (License
Flags 1, License Flags 2, netX License ID & netX License Flags) help identifying available licenses. If
the license information fields are equal to zero, a license or license code is not set. See page 32 for
details.

4.7.2.5 Read Hardware Information Request

The application uses the following packet in order to obtain information about the netX hardware. The
packet is send through the system mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EF6

Command
Read Hardware Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 READ HARDWARE INFORMATION REQUEST
 #define RCX_HW_HARDWARE_INFO_REQ 0x00001EF6

netX DPM Interface Manual Dual-Port Memory Function • 112

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_HW_HARDWARE_INFO_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_HW_HARDWARE_INFO_REQ_T;

4.7.2.6 Read Hardware Information Confirmation

The channel firmware returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
44
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EF7

Confirmation
Read Hardware Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulDevice
Number UINT32 0 … 0xFFFFFFFF

Device Number
Device Number / Identification (see page 29)

 ulSerial
Number UINT32 0 … 0xFFFFFFFF

Serial Number
Serial Number (see page 29)

 ausHw
Options[4]

Array of
UINT16 0 … 0xFFFF

Hardware Options
Hardware Assembly Option (see page 29)

usManu-
facturer UINT16 0 … 0xFFFF

Manufacturer
Manufacturer Code / Manufacturer Location
(see page 31)

 usProduction
Date UINT16 0 … 0xFFFF

Production Date
Production Date (see page 31)

 ulLicense
Flags1 UINT32 0 … 0xFFFFFFFF

License Code
License Flags 1 (see page 32)

 ulLicense
Flags2 UINT32 0 … 0xFFFFFFFF

License Code
License Flags 2 (see page 32)

 usNetx
LicenseID UINT16 0 … 0xFFFF

License Code
netX License Identification (see page 32)

 usNetxLicense
Flags UINT16 0 … 0xFFFF

License Code
netX License Flags (see page 32)

 continued next page

netX DPM Interface Manual Dual-Port Memory Function • 113

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

usDeviceClass UINT16 0 … 0xFFFF
Device Class
netX Device Class (see page 33)

bHwRevision UINT8 0 …0xFFFF

Hardware Revision
Hardware Revision Index (see page 34)

 bHw
Compatibility UINT8 0

Hardware Compatibility
Hardware Compatibility Index (see page 34)

 ulHardware
Features1 UINT32 0

Hardware Features 1
Not used, set to 0

 ulHardware
Features2 UINT32 0

Hardware Features 2
Not used, set to 0

bBootOption UINT8 0

Boot Option
Not used, set to 0

bReserved[11] Array of

UINT8 0
Reserved
Reserved, set to 0

 READ HARDWARE INFORMATION CONFIRMATION

 #define RCX_HW_HARDWARE_INFO_CNF RCX_HW_HARDWARE_INFO_REQ+1

Packet Structure Reference
typedef struct RCX_HW_HARDWARE_INFO_CNF_DATA_Ttag
{
 UINT32 ulDeviceNumber; /* device number */
 UINT32 ulSerialNumber; /* serial number */
 UINT16 ausHwOptions[4]; /* hardware assembly options */
 UINT16 usManufacturer; /* device manufacturer */
 UINT16 usProductionDate; /* production date */
 UINT32 ulLicenseFlags1; /* license flags 1 */
 UINT32 ulLicenseFlags2; /* license flags 2 */
 UINT16 usNetxLicenseID; /* license ID */
 UINT16 usNetxLicenseFlags; /* license flags */
 UINT16 usDeviceClass; /* device class */
 UINT8 bHwRevision; /* hardware revision */
 UINT8 bHwCompatibility; /* hardware compatibility */
 UINT32 ulHardwareFeatures1; /* not used, set to 0 */
 UINT32 ulHardwareFeatures2; /* not used, set to 0 */
 UINT8 bBootOption; /* not used, set to 0 */
 UINT8 bReserved[11]; /* reserved, set to 0 */
} RCX_HW_HARDWARE_INFO_CNF_DATA_T

typedef struct RCX_HW_HARDWARE_INFO_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_HW_HARDWARE_INFO_CNF_DATA_T tData; /* packet data */
} RCX_HW_HARDWARE_INFO_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 114

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.8 Identifying Channel Firmware
The request returns the name string, version and date of the boot loader, operating system or protocol
stack running on the netX chip, depending on the kind of firmware that is executed. The request
packet is passed through the system mailbox to request information about the boot loader and
operating system and through the channel mailbox to request information about the protocol stack,
respectively.

4.8.1 Identifying Channel Firmware Request

Depending on the requirements, the packet is passed through the system mailbox to obtain operating
system information, or it is passed through the channel mailbox to obtain protocol stack related
information.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000
0x00000020

Destination Queue Handle
SYSTEM
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EB6

Command
Identify Channel Firmware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelId UINT32 don't care
0 … 3

0xFFFFFFFF

Channel Identification
if ulDest = CHANNEL
Communication Channel Firmware
System Channel

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 IDENTIFY FIRMWARE REQUEST
 #define RCX_FIRMWARE_IDENTIFY_REQ 0x00001EB6

 SYSTEM CHANNEL #define RCX_SYSTEM_CHANNEL 0xFFFFFFFF

 COMMUNICATION CHANNEL 0 #define RCX_COMM_CHANNEL_0 0x00000000

 COMMUNICATION CHANNEL 1 #define RCX_COMM_CHANNEL_1 0x00000001

 COMMUNICATION CHANNEL 2 #define RCX_COMM_CHANNEL_2 0x00000002

 COMMUNICATION CHANNEL 3 #define RCX_COMM_CHANNEL_3 0x00000003

netX DPM Interface Manual Dual-Port Memory Function • 115

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_FIRMWARE_IDENTIFY_REQ_DATA_Ttag
{
 UINT32 ulChannelId; /* channel ID */
} RCX_FIRMWARE_IDENTIFY_REQ_DATA_T;

typedef struct RCX_FIRMWARE_IDENTIFY_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FIRMWARE_IDENTIFY_REQ_DATA_T tData; /* packet data */
} RCX_FIRMWARE_IDENTIFY_REQ_T;

Only if the packet is sent through the system channel, ulChannelId is evaluated. Otherwise
ulChannelId is ignored.

If the boot loader is active, the request above returns its version. Once a firmware is loaded, the boot
loader is erased from the memory. Then packet returns the version of the operating system. In both
cases RCX_PACKET_DEST_SYSTEM is used for ulDest and the packet is passed through the system
mailbox.

NOTE Boot loader and operating system (or firmware respectively) does not reside on the netX chip
side by side.

4.8.2 Identifying Channel Firmware Confirmation

The channel firmware returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
76
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EB7

Confirmation
Identify Channel Firmware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

tFwVersion Structure Firmware Version

see below

tFwName Structure Firmware Name

see below

tFwDate Structure Firmware Date

see below

netX DPM Interface Manual Dual-Port Memory Function • 116

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 IDENTIFY FIRMWARE CONFIRMATION
 #define RCX_FIRMWARE_IDENTIFY_CNF RCX_FIRMWARE_IDENTIFY_REQ+1

The netX firmware returns the following structure, if ulSta is RCX_S_OK. Otherwise only the packet
header is returned and no data structure.

Packet Structure Reference
typedef struct RCX_FW_VERSION_Ttag
{
 UINT16 usMajor; /* firmware major version */
 UINT16 usMinor; /* firmware minor version */
 UINT16 usBuild; /* firmware build */
 UINT16 usRevision; /* firmware revision */
} RCX_FW_VERSION_T;

typedef struct RCX_FW_NAME_Ttag
{
 UINT8 bNameLength; /* length of firmware name */
 UINT8 abName[63]; /* firmware name */
} RCX_FW_NAME_T;

typedef struct RCX_FW_DATE_Ttag
{
 UINT16 usYear; /* firmware creation year */
 UINT8 bMonth; /* firmware creation month */
 UINT8 bDay; /* firmware creation day */
} RCX_FW_DATE_T;

typedef struct RCX_FW_IDENTIFICATION_Ttag
{
 RCX_FW_VERSION_T tFwVersion; /* firmware version */
 RCX_FW_NAME_T tFwName; /* firmware name */
 RCX_FW_DATE_T tFwDate; /* firmware date */
} RCX_FW_IDENTIFICATION_T;

typedef struct RCX_FIRMWARE_IDENTIFY_CNF_DATA_Ttag
{
 RCX_FW_IDENTIFICATION_T tFirmwareIdentification; /* firmware ID */
} RCX_FIRMWARE_IDENTIFY_CNF_DATA_T;

typedef struct RCX_FIRMWARE_IDENTIFY_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FIRMWARE_IDENTIFY_CNF_DATA_T tData; /* packet data */
} RCX_FIRMWARE_IDENTIFY_CNF_T;

Version

The version field is described on page 186.

Name

This field holds the name of the firmware comprised of ASCII characters. The first byte of the field
holds the length of the following valid characters. Unused bytes are set to zero. The name string is
limited to 63 characters.

Date

This field holds the date of the release of the firmware. The first element holds the year; the second
element holds the month (range 1 … 12); the third element holds the day (range 1 … 31).

netX DPM Interface Manual Dual-Port Memory Function • 117

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.9 Reset Command

4.9.1 System Reset vs. Channel Initialization

There are several methods to restart the netX firmware. The first is called System Reset. The system
reset affects the netX operating system rcX and the protocol stacks. It forces the chip to immediately
stop all running protocol stacks and the rcX itself. During the system reset, the netX is performing an
internal memory check and other functions to insure the integrity of the netX chip itself.

The Channel Initialization as the second method affects a communication channel only. The channel
firmware then reads and evaluates the configuration settings (or SYCON.net database, if available)
again. The operating system is not affected. There are no particular tests performed during a channel
initialization.

A third method to reset the netX chip is called Boot Start. When a system reset is executed with the
boot start flag set, no firmware is started. The netX remains in boot loader mode.

NOTE A system reset, channel initialization and boot start may cause all network connection to be
interrupted immediately regardless of their current state.

4.9.2 Resetting netX through Dual-Port Memory

To reset the entire netX firmware, the host application has to set the HSF_RESET bit in the
bHostSysFlags register to perform a system wide reset, respectively the APP_COS_INIT flag for a
channel initialization in the ulApplicationCOS variable in the control block of the channel. The system
reset and the channel initialization are handled differently by the firmware (see above).

4.9.2.1 System Reset

To reset the netX operating system rcX and all communication channels the host application has to
write 0x55AA55AA (System Reset Cookie) to the ulSystemCommandCOS variable in the system
control block (see page 43). Then the HSF_RESET flag in bHostSysFlags (see page 42) has to be
set. If the operating system does not find 0x55AA55AA in the ulSystemCommandCOS variable, the
reset command is being ignored.

The operating system clears the NSF_READY flag in bNetxSysFlags (page 41), indicating that the
system wide reset is in progress. During the reset all communication channel tasks are stopped
regardless of their current state. The rcX operating system flushes the entire dual-port memory and
writes all memory locations to zero. After the reset the rcX is finished without complications and all
protocol stacks are started properly, the NSF_READY flag is set again. Otherwise, the NSF_ERROR
flag in bNetxSysFlags is set and an error code is being written in ulSystemError in the system status
block (see page 44) that helps identifying possible problems.

 SYSTEM RESET COOKIE #define RCX_SYS_RESET_COOKIE 0x55AA55AA

netX DPM Interface Manual Dual-Port Memory Function • 118

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

The image below illustrates the steps the host application has to perform in order to execute a system-
wide reset on the netX chip through the dual-port memory.

System Rest

NSF_READY Bit Set?

FinishFault

Write Reset Cookie

Set HSF_RESET Bit

Timeout?

NSF_READY Bit Cleared?

Timeout?

NSF_READY Bit Set?

Yes

Yes

Yes

Yes

Yes

No

No

No No

No

Figure 17 - System Reset Flowchart

Timing

The duration of the reset outlined above, depends on the firmware. Typically the NSF_READY flag is
cleard within around 100 – 500 ms after the HSF_RESET Flag was set. When cleared, the
NSF_READY bit will be set again after around 0.5 – 5 s. Generally, the reset should not take more
than 6 s.

4.9.2.2 Channel Initialization

In order to force the protocol stack to restart and evaluate the configuration parameter again, the
application can set the APP_COS_INIT flag in the ulApplicationCOS register in the control block or
send a reset packet to the communication channel. All open network connections are interrupted
immediately regardless of their current state. If the database is locked, re-initializing the channel is not
allowed (see pages 52 and 54).

Changing flags in the ulApplicationCOS register requires the application also to toggle the host
change of state command flag in the host communication flags register (see page 50). Only then, the
netX protocol stack recognizes the reset command.

netX DPM Interface Manual Dual-Port Memory Function • 119

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.9.2.3 Boot Start

The Boot Start feature uses a flag from the bHostSysFlags register on page 42 If the
HSF_BOOTSTART flag is set while a system reset is executed the netX operating system is forced to
stay in boot loader mode after the system reset has finished. A firmware that might reside on the chip
is not started. If the flag is cleared during reset, the firmware is being started.

To enable the boot loader mode, do the following:

1. Set HSF_BOOTSTART flag in the bHostSysFlags register.

2. Write the system reset cookie into the ulSystemCommandCOS variable in the system control
block.

3. Set the HSF_RESET flag in bHostSysFlags register. The system reset is being executed as
outlined above.

NOTE The Boot Start feature is not available on cifX 50 cards.

netX DPM Interface Manual Dual-Port Memory Function • 120

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.9.3 System Reset through Packets

Instead of using the dual-port memory, netX chip can be reset using a packet. The request packet is
passed through the system mailbox. All open network connections are interrupted immediately
regardless of their current state. If the database is locked, re-initializing the channel is not allowed (see
pages 52 and 54).

4.9.3.1 Reset Request

The application uses the following packet in order to reset netX chip. The reset packet is send through
the system mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 8 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E00

Command
System Reset

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information, Not Used

tData Structure Information

 ulTimeToReset UINT32 0 … 0xFFFFFFFF Time Delay to Reset in ms

ulResetMode UINT32 0

Reset Mode
Not used, set to zero

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 CHANNEL RESET REQUEST #define RCX_FIRMWARE_RESET_REQ 0x00001E00

Packet Structure Reference
typedef struct RCX_FIRMWARE_RESET_REQ_DATA_Ttag
{
 UINT32 ulTimeToReset; /* time to reset in ms */
 UINT32 ulResetMode; /* reset mode parameter */
} RCX_FIRMWARE_RESET_REQ_DATA_T;

typedef struct RCX_FIRMWARE_RESET_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FIRMWARE_RESET_REQ_DATA_T tData; /* packet data */
} RCX_FIRMWARE_RESET_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 121

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.9.3.2 Reset Confirmation

The channel firmware returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E01

Confirmation
System Reset

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 CHANNEL RESET CONFIRMATION

 #define RCX_CHANNEL_RESET_CNF RCX_CHANNEL_RESET_REQ+1
typedef struct RCX_FIRMWARE_RESET_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_FIRMWARE_RESET_CNF_T;

Data Field

There is no data field returned in the Reset confirmation packet.

netX DPM Interface Manual Dual-Port Memory Function • 122

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.9.3.3 Channel Initialization Request

Compared to the system reset, the channel initialization affects the designated channel only. A
channel initialization forces the protocol stack to immediately close all network connections and start
over. While the stack is started the configuration settings are evaluated again. The packet is send
through the channel mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F80

Command
Channel Initialization

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information, Not Used

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 CHANNEL INITIALIZATION REQUEST
 #define RCX_CHANNEL_INIT_REQ 0x00002F80

Packet Structure Reference
typedef struct RCX_CHANNEL_INIT_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_CHANNEL_INIT_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 123

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.9.3.4 Channel Initialization Confirmation

The channel firmware returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F81

Confirmation
Channel Initialization

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 CHANNEL INITIALIZATION CONFIRMATION

 #define RCX_CHANNEL_INIT_CNF RCX_CHANNEL_INIT_REQ+1

Packet Structure Reference
typedef struct RCX_CHANNEL_INIT_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_CHANNEL_INIT_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 124

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.10 Downloading Files to netX
Any download to the netX chip is handled via rcX packages which are described below. The netX
operating system rcX creates a file system where the files are stored. To download files to the netX,
the user application takes the file, splits it into smaller pieces that fit into the mailbox and sent them as
rcX packages to the netX. The rcX acknowledges each of the packets and may return an error code in
the reply, if a failure occurs.

Usually a file that has to be downloaded to the rcX (a firmware or configuration database for example)
does not fit into a single packet. The ulExt field is used for controlling packets that are sent in a
sequenced manner. It indicates the first, last and a packet in the sequence.

NOTE The user application must send the file in the order of its original sequence. The ulId field in
the packet holds a sequence number and is incremented by one for each new packet.
Sequence numbers shall not be skipped or used twice. The rcX cannot re-assemble a file
that is out of its natural order.

netX DPM Interface Manual Dual-Port Memory Function • 125

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.10.1 File Download

The download procedure starts with a file download request packet. The user application provides at
least the file length and file name. The rcX responds with the maximum packet data size, which can be
used in the following file data download packages. Then the application has to transfer the entire file
by sending as much data packets as necessary. Each packet will be acknowledged by the rcX. The
download is finished with the last packet.

Figure 18 - Flowchart Download

If an error occurs during the download, the process must be canceled by sending a download abort
command.

netX DPM Interface Manual Dual-Port Memory Function • 126

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.10.1.1 File Download Request

The packet below is the first request to be sent to the rcX operating system to start a file download.
The application provides the length of the file and its name in the request packet.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 18 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E62

Command:
File Download Request

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

ulXferType UINT32 1

Download Transfer Type
File Transfer

 ulMaxBlock
Size UINT32 1 … m

Max Block Size
Maximum Size of Block per Packet

ulFileLength UINT32 File Length

File size to be downloaded

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usFileName
Length UINT16 n

Length of Name
Length of the Following File Name (in Bytes)

abFileName[n] UINT8 0x20 … 0x7F

File Name
ASCII string, Zero Terminated; Size is n

netX DPM Interface Manual Dual-Port Memory Function • 127

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 FILE DOWNLOAD REQUEST #define RCX_FILE_DOWNLOAD_REQ 0x00001E62

 NO SEQUENCED PACKET #define RCX_PACKET_SEQ_NONE 0x00000000

 TRANSFER FILE #define RCX_FILE_XFER_FILE 0x00000001

 TRANSFER INTO FILE SYSTEM #define RCX_FILE_XFER_FILESYSTEM 0x00000001

 TRANSFER MODULE #define RCX_FILE_XFER_MODULE 0x00000002

 SYSTEM CHANNEL #define RCX_SYSTEM_CHANNEL 0xFFFFFFFF

 COMMUNICATION CHANNEL 0 #define RCX_COMM_CHANNEL_0 0x00000000

 COMMUNICATION CHANNEL 1 #define RCX_COMM_CHANNEL_1 0x00000001

 COMMUNICATION CHANNEL 2 #define RCX_COMM_CHANNEL_2 0x00000002

 COMMUNICATION CHANNEL 3 #define RCX_COMM_CHANNEL_3 0x00000003

Packet Structure Reference
typedef struct RCX_FILE_DOWNLOAD_REQ_DATA_Ttag
{
 UINT32 ulXferType;
 UINT32 ulMaxBlockSize;
 UINT32 ulFileLength;
 UINT32 ulChannelNo;
 UINT16 usFileNameLength;
 /* a NULL-terminated file name follows here */
 /* UINT8 abFileName[]; */
} RCX_FILE_DOWNLOAD_REQ_DATA_T;

typedef struct RCX_FILE_DOWNLOAD_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_DOWNLOAD_REQ_DATA_T tData; /* packet data */
} RCX_FILE_DOWNLOAD_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 128

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.10.1.2 File Download Confirmation

The rcX operating system returns the following confirmation packet. It contains the size of the data
block that can be transferred in one packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E63

Confirmation
File Download

ulExt UINT32 0x00000000 Extension

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulMaxBlock
Size UINT32 1 … n

Max Block Size
Maximum Size of Block per Packet

 FILE DOWNLOAD CONFIRMATION

 #define RCX_FILE_DOWNLOAD_CNF RCX_FILE_DOWNLOAD_REQ+1

Packet Structure Reference
typedef struct RCX_FILE_DOWNLOAD_CNF_DATA_Ttag
{
 UINT32 ulMaxBlockSize;
} RCX_FILE_DOWNLOAD_CNF_DATA_T;

typedef struct RCX_FILE_DOWNLOAD_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_DOWNLOAD_CNF_DATA_T tData; /* packet data */
} RCX_FILE_DOWNLOAD_CNF_T;

Block Size

The block size is returned in the reply packet, if ulSta is equal to RCX_S_OK. Otherwise no data field is
returned.

netX DPM Interface Manual Dual-Port Memory Function • 129

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.10.2 File Data Download

4.10.2.1 File Data Download Request

This packet is used to transfer a block of data to the netX operating system rcX to be stored on the file
system. The term data block is used to describe a portion of a file. The data block in the packet is
identified by a block or sequence number and is secured through a continuous CRC32 checksum.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 8 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E64

Command
File Data Download

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information, Not Used

tData Structure Information

ulBlockNo UINT32 0 ... m

Block Number
Block or Sequence Number

ulChksum UINT32 S

Checksum
CRC32 Polynomial

 abData[n] UINT8 0 … 0xFF File Data Block (Size is n)

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 FILE DATA DOWNLOAD #define RCX_FILE_DATA_DOWNLOAD_REQ 0x00001E64

 NO SEQUENCED PACKET #define RCX_PACKET_SEQ_NONE 0x00000000

 FIRST PACKET OF SEQUENCE #define RCX_PACKET_SEQ_FIRST 0x00000080

 SEQUENCED PACKET #define RCX_PACKET_SEQ_MIDDLE 0x000000C0

 LAST PACKET OF SEQUENCE #define RCX_PACKET_SEQ_LAST 0x00000040

netX DPM Interface Manual Dual-Port Memory Function • 130

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_FILE_DOWNLOAD_DATA_REQ_DATA_Ttag
{
 UINT32 ulBlockNo; /* block number */
 UINT32 ulChksum; /* cumulative CRC-32 checksum */
 /* data block follows here */
 /* UINT8 abData[]; */
} RCX_FILE_DOWNLOAD_DATA_REQ_DATA_T;

typedef struct RCX_FILE_DOWNLOAD_DATA_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_DOWNLOAD_DATA_REQ_DATA_T tData; /* packet data */
} RCX_FILE_DOWNLOAD_DATA_REQ_T;

The block or sequence number ulBlockNo starts with zero for the first data packet and is incremented
by one for each following packet. The checksum in ulChksum is calculated as a CRC32 polynomial. It
is a calculated continuously over all data packets that were sent already. A sample to calculate the
checksum is included in the toolkit for netX based products.

NOTE If the download fails, the rcX returns an error code in ulSta. The user application then has to
send an abort request packet (see page 132) and start over.

netX DPM Interface Manual Dual-Port Memory Function • 131

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.10.2.2 File Data Download Confirmation

The rcX operating system returns the following confirmation packet. It contains the expected CRC32
checksum of the data block.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E65

Confirmation
File Data Download

ulExt UINT32
0x00000000

Extension:
No Sequenced Packet

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulExpected
Crc32 UINT32 S

Checksum
Expected CRC32 Polynomial

 FILE DATA DOWNLOAD CONFIRMATION

 #define RCX_FILE_DATA_DOWNLOAD_CNF RCX_FILE_DATA_DOWNLOAD_REQ+1

 NO SEQUENCED PACKET
 #define RCX_PACKET_SEQ_NONE 0x00000000

typedef struct RCX_FILE_DOWNLOAD_DATA_CNF_DATA_Ttag
{
 UINT32 ulExpectedCrc32; /* expected CRC-32 checksum */
} RCX_FILE_DOWNLOAD_DATA_CNF_DATA_T;

typedef struct RCX_FILE_DOWNLOAD_DATA_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_DOWNLOAD_DATA_CNF_DATA_T tData; /* packet data */
} RCX_FILE_DOWNLOAD_DATA_CNF_T;

Checksum

The checksum is returned in the reply that was calculated for the request packet, if ulSta is equal to
RCX_S_OK. Otherwise no data field is returned.

netX DPM Interface Manual Dual-Port Memory Function • 132

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.10.3 Abort File Download

4.10.3.1 Abort File Download Request

If necessary, the application can abort the download procedure at any time. If an error occurs during
downloading a file (the rcX operating system returns ulSta not equal to RCX_S_OK), the user
application has to abort the download procedure by sending the abort command outlined below.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E66

Command
Abort Download Request

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 0x00000000 Routing Information, Not Used

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 ABORT DOWNLOAD REQUEST
 #define RCX_FILE_ABORT_REQ 0x00001E66

typedef struct RCX_FILE_DOWNLOAD_ABORT_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_FILE_DOWNLOAD_ABORT_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 133

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.10.3.2 Abort File Download Confirmation

The rcX operating system returns the following confirmation packet, indicating that the download was
aborted.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E67

Confirmation
Abort Download Confirmation

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 ABORT DOWNLOAD REQUEST
 #define RCX_FILE_ABORT_CNF RCX_FILE_ABORT_REQ+1

Packet Structure Reference
typedef struct RCX_FILE_DOWNLOAD_ABORT_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_FILE_DOWNLOAD_ABORT_CNF_T;

Data Field

There is no data field returned in the Abort Download confirmation packet.

netX DPM Interface Manual Dual-Port Memory Function • 134

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.11 Uploading Files from netX
As for the download, uploading is handled via packets. The upload file is selected by its file name.
During the upload request, the file name is transferred to the rcX. If the requested file exists, the rcX
returns all necessary file information in the response. Then the host application creates file read
request packets. In return the rcX send response packets holding portions of the file data. Then the
user application sends the next request packet. The application has to continue sending read request
packets until the entire file is transferred. Receiving the last response packet finishes the upload
process.

Usually a file which is uploaded from the rcX does not fit into a single packet. The ulExt field is used
for controlling packets that are sent in a sequenced manner. It indicates the first, last or a sequenced
packet.

NOTE The rcX sends the file in the order of its original sequence. The ulId field in the packet holds
a sequence number and is incremented by one for each new packet. Sequence numbers
shall not be skipped or used twice.

netX DPM Interface Manual Dual-Port Memory Function • 135

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.11.1 File Upload

The netX operating system offers a function to read the content of the file system. This information can
be used by the host application to search for a specific file (TBD). See following flowchart of how to
upload a file from the netX chip.

Figure 19 - Flowchart upload

If an error occurs, during uploading a file, the process must be canceled by sending an upload abort
command.

netX DPM Interface Manual Dual-Port Memory Function • 136

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.11.1.1 File Upload Request

The packet below is the first request to be sent to the rcX operating system to start a file upload. The
application provides the length of the file and its name in the request packet.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 14 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E60

Command
File Upload Request

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information, Not Used

tData Structure Information

ulXferType UINT32 1

Transfer Type:
rcX File Transfer

 ulMaxBlock
Size UINT32 1 … m

Max Block Size
Maximum Size of Block per Packet

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usFileName
Length UINT16 n

Length of Name
Length of Following File Name (in Bytes)

abFileName[n] UINT8 0x20 … 0x7F

File Name
ASCII String, Zero Terminated (Length is n)

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 FILE UPLOAD COMMAND #define RCX_FILE_UPLOAD_REQ 0x00001E60

 NO SEQUENCED PACKET #define RCX_PACKET_SEQ_NONE 0x00000000

 TRANSFER TYPE #define RCX_FILE_XFER 0x00000001

 SYSTEM CHANNEL #define RCX_SYSTEM_CHANNEL 0xFFFFFFFF

 COMMUNICATION CHANNEL 0 #define RCX_COMM_CHANNEL_0 0x00000000

 COMMUNICATION CHANNEL 1 #define RCX_COMM_CHANNEL_1 0x00000001

 COMMUNICATION CHANNEL 2 #define RCX_COMM_CHANNEL_2 0x00000002

 COMMUNICATION CHANNEL 3 #define RCX_COMM_CHANNEL_3 0x00000003

netX DPM Interface Manual Dual-Port Memory Function • 137

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_FILE_UPLOAD_REQ_DATA_Ttag
{
 UINT32 ulXferType; /* transfer type */
 UINT32 ulMaxBlockSize; /* block size */
 UINT32 ulChannelNo; /* channel number */
 UINT16 usFileNameLength; /* length of file name */
 /* a NULL-terminated file name follows here */
 /* UINT8 abFileName[]; file name */
} RCX_FILE_UPLOAD_REQ_DATA_T;

typedef struct RCX_FILE_UPLOAD_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_UPLOAD_REQ_DATA_T tData; /* packet data */
} RCX_FILE_UPLOAD_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 138

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.11.1.2 File Upload Confirmation

The rcX operating system returns the following confirmation packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 8 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E61

Confirmation
File Upload

ulExt UINT32 0x00000000 Extension

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulMaxBlock
Size UINT32 1 … n

Max Block Size
Maximum Size of Block per Packet

ulFileLength UINT32 1 … p

File Length
Total File Length (in Bytes)

 FILE UPLOAD CONFIRMATION

 #define RCX_FILE_UPLOAD_CNF RCX_FILE_UPLOAD_REQ+1

 NO SEQUENCED PACKET #define RCX_PACKET_SEQ_NONE 0x00000000

 TRANSFER TYPE #define RCX_FILE_XFER 0x00000001

Packet Structure Reference
typedef struct RCX_FILE_UPLOAD_CNF_DATA_Ttag
{
 UINT32 ulMaxBlockSize; /* maximum block size possible */
 UINT32 ulFileLength; /* file size to transfer */
} RCX_FILE_UPLOAD_CNF_DATA_T;

typedef struct RCX_FILE_UPLOAD_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_UPLOAD_CNF_DATA_T tData; /* packet data */
} RCX_FILE_UPLOAD_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 139

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.11.2 File Data Upload

4.11.2.1 File Data Upload Request

This packet is used to transfer a block of data from the rcX file system to the user application. The
term data block is used to describe a portion of a file. The data block in the packet is identified by a
block or sequence number and is secured through a continuous CRC32 checksum.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E6E

Command
File Data Upload

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information, Not Used

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 FILE DATA UPLOAD REQUEST #define RCX_FILE_DATA_UPLOAD_REQ 0x00001E6E

 NO SEQUENCED PACKET #define RCX_PACKET_SEQ_NONE 0x00000000

 FIRST PACKET OF SEQUENCE #define RCX_PACKET_SEQ_FIRST 0x00000080

 SEQUENCED PACKET #define RCX_PACKET_SEQ_MIDDLE 0x000000C0

 LAST PACKET OF SEQUENCE #define RCX_PACKET_SEQ_LAST 0x00000040

 TRANSFER TYPE #define RCX_FILE_XFER 0x00000001

Packet Structure Reference
typedef struct RCX_FILE_UPLOAD_DATA_REQ_Ttag
{
 PACKET_HEADER_T tHead; /* packet header */
} RCX_FILE_UPLOAD_DATA_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 140

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.11.2.2 File Data Upload Confirmation

The rcX operating system returns the following confirmation packet. It contains the block number and
the expected CRC32 checksum of the data block.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 Form Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 8 + n Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E6F

Confirmation
File Data Upload

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

ulBlockNo UINT32 0 ... m

Block Number
Block or Sequence Number

ulChksum UINT32 S

Checksum
CRC32 Polynomial

 abData[n] UINT8 0 … 0xFF File Data Block (Size is n)

 FILE DATA UPLOAD CONFIRMATION

 #define RCX_FILE_DATA_UPLOAD_CNF RCX_FILE_DATA_UPLOAD_REQ+1

 NO SEQUENCED PACKET
 #define RCX_PACKET_SEQ_NONE 0x00000000

Packet Structure Reference
typedef struct RCX_FILE_UPLOAD_DATA_CNF_DATA_Ttag
{
 UINT32 ulBlockNo; /* block number starting from 0 */
 UINT32 ulChksum; /* cumulative CRC-32 checksum */
 /* data block follows here */
 /* UINT8 abData[]; */
} RCX_FILE_UPLOAD_DATA_CNF_DATA_T;

typedef struct RCX_FILE_UPLOAD_DATA_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_UPLOAD_DATA_CNF_DATA_T tData; /* packet data */
} RCX_FILE_UPLOAD_DATA_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 141

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Block Number, Checksum

The block number ulBlockNo starts with zero for the first data packet and is incremented by one for
every following packet. The checksum ulChksum is calculated as a CRC32 polynomial. It is a
calculated continuously over all data packets that were sent already. A sample to calculate the
checksum is included in the toolkit for netX based products.

The rcX sends the file in the order of its original sequence. Sequence numbers are not skipped or
used twice.

NOTE If the download fails, the user application has to abort the download and start over.

4.11.3 File Upload Abort

4.11.3.1 File Upload Abort Request

If necessary, the application can abort the upload procedure at any time. If an error occurs during
uploading a file (the rcX operating system returns ulSta not equal to RCX_S_OK), the user application
has to cancel the upload procedure by sending the abort command outlined below.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle:
SYSTEM

ulSrc UINT32 x Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E5E

Command
Abort Upload Request

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 0x00000000 Routing Information, Not Used

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 FILE ABORT UPLOAD REQUEST
 #define RCX_FILE_ABORT_REQ 0x00001E5E

Packet Structure Reference
typedef struct RCX_FILE_UPLOAD_ABORT_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_FILE_UPLOAD_ABORT_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 142

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.11.3.2 File Upload Abort Confirmation

The rcX operating system returns the following confirmation packet, indicating that the Upload was
aborted.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E5F

Confirmation
Abort Upload

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 z Routing Information, Don't Care, Don't Use

 FILE ABORT UPLOAD CONFIRMATION

 #define RCX_FILE_ABORT_CNF RCX_FILE_ABORT_REQ+1

Packet Structure Reference
typedef struct RCX_FILE_UPLOAD_ABORT_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_FILE_UPLOAD_ABORT_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 143

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.11.4 Creating a CRC32 Checksum

This is an example which shows the generation of a CRC32 checksum.
/***/
/*! Create a CRC32 value from the given buffer data
* \param ulCRC continued CRC32 value
* \param pabBuffer buffer to create the CRC from
* \param ulLength buffer length
* \return CRC32 value */
/***/
static unsigned long CreateCRC32(unsigned long ulCRC,
 unsigned char* pabBuffer,
 unsigned long ulLength)
{
 if((0 == pabBuffer) || (0 == ulLength))
 {
 return ulCRC;
 }
 ulCRC = ulCRC ^ 0xffffffff;
 for(;ulLength > 0; --ulLength)
 {
 ulCRC = (Crc32Table[((ulCRC) ^ (*(pabBuffer++))) & 0xff] ^ ((ulCRC) >> 8));
 }
 return(ulCRC ^ 0xffffffff);
}

/***/
/*! CRC 32 lookup table */
/***/
static unsigned long Crc32Table[256]=
{
 0x00000000UL, 0x77073096UL, 0xee0e612cUL, 0x990951baUL, 0x076dc419UL, 0x706af48fUL, 0xe963a535UL,
 0x9e6495a3UL, 0x0edb8832UL, 0x79dcb8a4UL, 0xe0d5e91eUL, 0x97d2d988UL, 0x09b64c2bUL, 0x7eb17cbdUL,
 0xe7b82d07UL, 0x90bf1d91UL, 0x1db71064UL, 0x6ab020f2UL, 0xf3b97148UL, 0x84be41deUL, 0x1adad47dUL,
 0x6ddde4ebUL, 0xf4d4b551UL, 0x83d385c7UL, 0x136c9856UL, 0x646ba8c0UL, 0xfd62f97aUL, 0x8a65c9ecUL,
 0x14015c4fUL, 0x63066cd9UL, 0xfa0f3d63UL, 0x8d080df5UL, 0x3b6e20c8UL, 0x4c69105eUL, 0xd56041e4UL,
 0xa2677172UL, 0x3c03e4d1UL, 0x4b04d447UL, 0xd20d85fdUL, 0xa50ab56bUL, 0x35b5a8faUL, 0x42b2986cUL,
 0xdbbbc9d6UL, 0xacbcf940UL, 0x32d86ce3UL, 0x45df5c75UL, 0xdcd60dcfUL, 0xabd13d59UL, 0x26d930acUL,
 0x51de003aUL, 0xc8d75180UL, 0xbfd06116UL, 0x21b4f4b5UL, 0x56b3c423UL, 0xcfba9599UL, 0xb8bda50fUL,
 0x2802b89eUL, 0x5f058808UL, 0xc60cd9b2UL, 0xb10be924UL, 0x2f6f7c87UL, 0x58684c11UL, 0xc1611dabUL,
 0xb6662d3dUL, 0x76dc4190UL, 0x01db7106UL, 0x98d220bcUL, 0xefd5102aUL, 0x71b18589UL, 0x06b6b51fUL,
 0x9fbfe4a5UL, 0xe8b8d433UL, 0x7807c9a2UL, 0x0f00f934UL, 0x9609a88eUL, 0xe10e9818UL, 0x7f6a0dbbUL,
 0x086d3d2dUL, 0x91646c97UL, 0xe6635c01UL, 0x6b6b51f4UL, 0x1c6c6162UL, 0x856530d8UL, 0xf262004eUL,
 0x6c0695edUL, 0x1b01a57bUL, 0x8208f4c1UL, 0xf50fc457UL, 0x65b0d9c6UL, 0x12b7e950UL, 0x8bbeb8eaUL,
 0xfcb9887cUL, 0x62dd1ddfUL, 0x15da2d49UL, 0x8cd37cf3UL, 0xfbd44c65UL, 0x4db26158UL, 0x3ab551ceUL,
 0xa3bc0074UL, 0xd4bb30e2UL, 0x4adfa541UL, 0x3dd895d7UL, 0xa4d1c46dUL, 0xd3d6f4fbUL, 0x4369e96aUL,
 0x346ed9fcUL, 0xad678846UL, 0xda60b8d0UL, 0x44042d73UL, 0x33031de5UL, 0xaa0a4c5fUL, 0xdd0d7cc9UL,
 0x5005713cUL, 0x270241aaUL, 0xbe0b1010UL, 0xc90c2086UL, 0x5768b525UL, 0x206f85b3UL, 0xb966d409UL,
 0xce61e49fUL, 0x5edef90eUL, 0x29d9c998UL, 0xb0d09822UL, 0xc7d7a8b4UL, 0x59b33d17UL, 0x2eb40d81UL,
 0xb7bd5c3bUL, 0xc0ba6cadUL, 0xedb88320UL, 0x9abfb3b6UL, 0x03b6e20cUL, 0x74b1d29aUL, 0xead54739UL,
 0x9dd277afUL, 0x04db2615UL, 0x73dc1683UL, 0xe3630b12UL, 0x94643b84UL, 0x0d6d6a3eUL, 0x7a6a5aa8UL,
 0xe40ecf0bUL, 0x9309ff9dUL, 0x0a00ae27UL, 0x7d079eb1UL, 0xf00f9344UL, 0x8708a3d2UL, 0x1e01f268UL,
 0x6906c2feUL, 0xf762575dUL, 0x806567cbUL, 0x196c3671UL, 0x6e6b06e7UL, 0xfed41b76UL, 0x89d32be0UL,
 0x10da7a5aUL, 0x67dd4accUL, 0xf9b9df6fUL, 0x8ebeeff9UL, 0x17b7be43UL, 0x60b08ed5UL, 0xd6d6a3e8UL,
 0xa1d1937eUL, 0x38d8c2c4UL, 0x4fdff252UL, 0xd1bb67f1UL, 0xa6bc5767UL, 0x3fb506ddUL, 0x48b2364bUL,
 0xd80d2bdaUL, 0xaf0a1b4cUL, 0x36034af6UL, 0x41047a60UL, 0xdf60efc3UL, 0xa867df55UL, 0x316e8eefUL,
 0x4669be79UL, 0xcb61b38cUL, 0xbc66831aUL, 0x256fd2a0UL, 0x5268e236UL, 0xcc0c7795UL, 0xbb0b4703UL,
 0x220216b9UL, 0x5505262fUL, 0xc5ba3bbeUL, 0xb2bd0b28UL, 0x2bb45a92UL, 0x5cb36a04UL, 0xc2d7ffa7UL,
 0xb5d0cf31UL, 0x2cd99e8bUL, 0x5bdeae1dUL, 0x9b64c2b0UL, 0xec63f226UL, 0x756aa39cUL, 0x026d930aUL,
 0x9c0906a9UL, 0xeb0e363fUL, 0x72076785UL, 0x05005713UL, 0x95bf4a82UL, 0xe2b87a14UL, 0x7bb12baeUL,
 0x0cb61b38UL, 0x92d28e9bUL, 0xe5d5be0dUL, 0x7cdcefb7UL, 0x0bdbdf21UL, 0x86d3d2d4UL, 0xf1d4e242UL,
 0x68ddb3f8UL, 0x1fda836eUL, 0x81be16cdUL, 0xf6b9265bUL, 0x6fb077e1UL, 0x18b74777UL, 0x88085ae6UL,
 0xff0f6a70UL, 0x66063bcaUL, 0x11010b5cUL, 0x8f659effUL, 0xf862ae69UL, 0x616bffd3UL, 0x166ccf45UL,
 0xa00ae278UL, 0xd70dd2eeUL, 0x4e048354UL, 0x3903b3c2UL, 0xa7672661UL, 0xd06016f7UL, 0x4969474dUL,
 0x3e6e77dbUL, 0xaed16a4aUL, 0xd9d65adcUL, 0x40df0b66UL, 0x37d83bf0UL, 0xa9bcae53UL, 0xdebb9ec5UL,
 0x47b2cf7fUL, 0x30b5ffe9UL, 0xbdbdf21cUL, 0xcabac28aUL, 0x53b39330UL, 0x24b4a3a6UL, 0xbad03605UL,
 0xcdd70693UL, 0x54de5729UL, 0x23d967bfUL, 0xb3667a2eUL, 0xc4614ab8UL, 0x5d681b02UL, 0x2a6f2b94UL,
 0xb40bbe37UL, 0xc30c8ea1UL, 0x5a05df1bUL, 0x2d02ef8dUL
};

netX DPM Interface Manual Dual-Port Memory Function • 144

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.12 Read MD5 File Checksum
The rcX operating system offers a file checksum, based on a MD5 algorithm. This checksum can be
read for a given file.

4.12.1 MD5 File Checksum Request
Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 6 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E68

Command
Get MD5 File Checksum

ulExt UINT32
0x00000000

Extension
None

ulRout UINT32 0x00000000 Routing Information, Not Used

tData Structure Information

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usFileName
Length UINT16 n

Length of Name
Length of the Following File Name (in Bytes)

abFileName[n] UINT8 0x20 … 0x7F

File Name
ASCII string, Zero Terminated; Size is n

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 REQUEST MD5 FILE CHECKSUM REQUEST
 #define RCX_FILE_GET_MD5_REQ 0x00001E68

netX DPM Interface Manual Dual-Port Memory Function • 145

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_FILE_GET_MD5_REQ_DATA_Ttag
{
 UINT32 ulChannelNo; /* 0 = Channel 0, ... 3 = Channel 3, */
 /* 0xFFFFFFFF = System, see RCX_FILE_xxxx */
 UINT16 usFileNameLength; /* length of NUL-terminated file name */

 /* a NULL-terminated file name will follow here */
} RCX_FILE_GET_MD5_REQ_DATA_T;

typedef struct RCX_FILE_GET_MD5_REQ_Ttag
{
 PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_GET_MD5_REQ_DATA_T tData; /* packet data */
} RCX_FILE_GET_MD5_REQ_T;

4.12.2 MD5 File Checksum Confirmation
Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E69

Confirmation
Get MD5 File Checksum

ulExt UINT32 0x00000000 Extension: None

ulRout UINT32 z Routing Information, Not Used

tData Structure Information

 abMD5[16] UNIT8 0 … 0xFF MD5 checksum

 REQUEST MD5 FILE CHECKSUM REQUEST

 #define RCX_FILE_GET_MD5_CNF RCX_FILE_GET_MD5_REQ+1

netX DPM Interface Manual Dual-Port Memory Function • 146

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_FILE_GET_MD5_CNF_DATA_Ttag
{
 UINT8 abMD5[16]; /* MD5 checksum */
} RCX_FILE_GET_MD5_CNF_DATA_T;

typedef struct RCX_FILE_GET_MD5_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_GET_MD5_CNF_DATA_T tData; /* packet data */
} RCX_FILE_GET_MD5_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 147

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.13 Delete a File
If the target hardware supports a FLASH based files system, all downloaded files like firmware files
and configuration files are stored in the FLASH memory. The following packet allows deletion of files
on the target files system.

4.13.1 File Delete Request
Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle:
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 6 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E6A

Command
File Delete Request

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usFileName
Length UINT16 0 … n

Length of Name
Length of the Following File Name (in Bytes)

 abFileName[n] UINT8 0x20 … 0x7F
File Name
ASCII string, Zero Terminated; Size is n

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 FILE DELETE REQUEST #define RCX_FILE_DELETE_REQ 0x00001E6A

 COMMUNICATION CHANNEL 0 #define RCX_COMM_CHANNEL_0 0x00000000

 COMMUNICATION CHANNEL 1 #define RCX_COMM_CHANNEL_1 0x00000001

 COMMUNICATION CHANNEL 2 #define RCX_COMM_CHANNEL_2 0x00000002

 COMMUNICATION CHANNEL 3 #define RCX_COMM_CHANNEL_3 0x00000003

 SYSTEM CHANNEL #define RCX_SYSTEM_CHANNEL 0xFFFFFFFF

netX DPM Interface Manual Dual-Port Memory Function • 148

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_FILE_DELETE_REQ_DATA_Ttag
{
 UINT32 ulChannelNo; /* 0 = channel 0, ..., 3 = channel 3 */
 /* 0xFFFFFFFF = system, see RCX_FILE_xxxx */
 UINT16 usFileNameLength; /* length of NULL-terminated file name */
 /* a NULL-terminated file name will follow here */
} RCX_FILE_DELETE_REQ_DATA_T;

typedef struct RCX_FILE_DELETE_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_FILE_DELETE_REQ_DATA_T tData; /* packet data */
} RCX_FILE_DELETE_REQ_T;

4.13.2 File Delete Confirmation
Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E6B

Command
File Delete Confirmation

ulExt UINT32 0x00000000 Extension

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 FILE DELETE REQUEST

 #define RCX_FILE_DELETE_CNF RCX_FILE_DELETE_REQ+1

Packet Structure Reference
typedef struct RCX_FILE_DELETE_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_FILE_DELETE_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 149

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.14 List Directories and Files from File System
Directories and files in the rcX file system can be listed by the command outlined below.

4.14.1 Directory List Request
Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 6 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E70

Command
Directory List Request

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

ulChannelNo UINT32 0 … 3

0xFFFFFFFF

Channel Number
Communication Channel
System Channel

 usDirName
Length UINT16 0 … n

Name Length
Length of the Directory Name (in Bytes)

abDirName[n] UINT8 0x20 … 0x7F

Directory Name
ASCII string, Zero Terminated; Size is n

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 DIRECTORY LIST REQUEST #define RCX_DIR_LIST_REQ 0x00001E70

 SYSTEM CHANNEL #define RCX_SYSTEM_CHANNEL 0xFFFFFFFF

 COMMUNICATION CHANNEL 0 #define RCX_COMM_CHANNEL_0 0x00000000

 COMMUNICATION CHANNEL 1 #define RCX_COMM_CHANNEL_1 0x00000001

 COMMUNICATION CHANNEL 2 #define RCX_COMM_CHANNEL_2 0x00000002

 COMMUNICATION CHANNEL 3 #define RCX_COMM_CHANNEL_3 0x00000003

netX DPM Interface Manual Dual-Port Memory Function • 150

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_DIR_LIST_REQ_DATA_Ttag
{
 UINT32 ulChannelNo; /* 0 = channel 0, ..., 3 = channel 3 */
 /* 0xFFFFFFFF = system, see RCX_FILE_xxxx */
 UINT16 usDirNameLength; /* length of NULL terminated string */
 /* a NULL-terminated name string will follow here */
} RCX_DIR_LIST_REQ_DATA_T;

typedef struct RCX_DIR_LIST_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_DIR_LIST_REQ_DATA_T tData; /* packet data */
} POST RCX_DIR_LIST_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 151

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.14.2 Directory List Confirmation
Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 6 + n Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E71

Confirmation
Directory List Request

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

 szName[16] UINT8 File Name

 ulFileSize UINT32 1 … m File Size in Bytes

bFileType UINT8 1

2

File Type
Directory
File

 bReserved UINT8 0 Reserved, unused

 usReserved2 UINT16 0 Reserved, unused

 DIRECTORY LIST CONFIRMATION

 #define RCX_DIR_LIST_CNF RCX_DIR_LIST_REQ+1

 TYPE: DIRECTORY
 #define RCX_DIR_LIST_CNF_FILE_TYPE_DIRECTORY 0x00000001

 TYPE: FILE
 #define RCX_DIR_LIST_CNF_FILE_TYPE_FILE 0x00000002

netX DPM Interface Manual Dual-Port Memory Function • 152

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_DIR_LIST_CNF_DATA_Ttag
{
 UINT8 szName[16]; /* file name */
 UINT32 ulFileSize; /* file size */
 UINT8 bFileType; /* file type */
 UINT8 bReserved; /* reserved, set to 0 */
 UINT16 usReserved2 /* reserved, set to 0 */
} RCX_DIR_LIST_CNF_DATA_T;

typedef struct RCX_DIR_LIST_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_DIR_LIST_CNF_DATA_T tData; /* packet data */
} RCX_DIR_LIST_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 153

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.15 Host / Device Watchdog
The host watchdog and the device watchdog cell in the control block of each of the communication
channel allow the operating system running on the netX supervising the host application and vice
versa. There is no watchdog function for the system block or for the handshake channel. The
watchdog for the channels is located in the control block respectively in the status block (see pages 52
and 54 for details).

4.15.1 Function

The netX firmware reads the content of the device watchdog cell, increments the value by one and
copies it back into the host watchdog location. Now the application has to copy the new value from the
host watchdog location into the device watchdog location. Copying the host watchdog cell to the
device watchdog cell has to happen in the configured watchdog time. When the overflow occurs, the
firmware starts over and a one appears in the host watchdog cell. A zero turns off the watchdog and
therefore never appears in the host watchdog cell in the regular process.

The minimum watchdog time is 20 ms. The application can start the watchdog function by copying any
value unequal to zero into device watchdog cell. A zero in the device watchdog location stops the
watchdog function. The watchdog timeout is configurable in SYCON.net and downloaded to the netX
firmware.

If the application fails to copy the value from the host watchdog location to the device watchdog
location within the configured watchdog time, the protocol stack will interrupt all network connections
immediately regardless of their current state. If the watchdog tripped, power cycling, channel reset or
channel initialization allows the communication channel to open network connections again.

 WATCHDOG OFF #define RCX_WD_OFF 0x00000000

netX DPM Interface Manual Dual-Port Memory Function • 154

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.15.2 Get Watchdog Time Request

The application uses the following packet in order to read the current watchdog time from the
communication channel. Since there is a watchdog per commincation channel, the packet is send
through the channel mailbox.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F02

Command
Get Watchdog Time

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 GET WATCHDOG TIME REQUEST
 #define RCX_GET_WATCHDOG_TIME_REQ 0x00002F02

Packet Structure Reference
typedef struct RCX_GET_WATCHDOG_TIME_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_GET_WATCHDOG_TIME_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 155

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.15.3 Get Watchdog Time Confirmation

The system channel returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F03

Confirmation
Get Watchdog Time

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulWdgTime UINT32 0, 20 … 0xFFFF Watchdog Time

 GET WATCHDOG TIME CONFIRMATION

 #define RCX_GET_WATCHDOG_TIME_CNF RCX_GET_WATCHDOG_TIME_REQ+1

Packet Structure Reference
typedef struct RCX_GET_WATCHDOG_TIME_CNF_DATA_Ttag
{
 UINT32 ulWdgTime; /* current watchdog time */
} RCX_GET_WATCHDOG_TIME_CNF_DATA_T;

typedef struct RCX_GET_WATCHDOG_TIME_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_GET_WATCHDOG_TIME_CNF_DATA_T tData; /* packet data */
} RCX_GET_WATCHDOG_TIME_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 156

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.15.4 Set Watchdog Time Request

The application uses the following packet in order to set the watchdog time for the netX operating
system RCX. The packet is send through the system mailbox to the netX operating system.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F04

Command
Set Watchdog Time

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulWdgTime UINT32 0, 20 … 0xFFFF Watchdog Time

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 SET WATCHDOG TIME REQUEST
 #define RCX_SET_WATCHDOG_TIME_REQ 0x00002F04

Packet Structure Reference
typedef struct RCX_SET_WATCHDOG_TIME_REQ_DATA_Ttag
{
 UINT32 ulWdgTime; /* new watchdog time */
} RCX_SET_WATCHDOG_TIME_REQ_DATA_T;

typedef struct RCX_SET_WATCHDOG_TIME_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_SET_WATCHDOG_TIME_REQ_DATA_T tData; /* packet data */
} RCX_SET_WATCHDOG_TIME_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 157

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.15.5 Set Watchdog Time Confirmation

The system channel returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F05

Confirmation
Set Watchdog Time

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 SET WATCHDOG TIME CONFIRMATION

 #define RCX_SET_WATCHDOG_TIME_CNF RCX_SET_WATCHDOG_TIME_REQ+1

Packet Structure Reference
typedef struct RCX_SET_WATCHDOG_TIME_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_SET_WATCHDOG_TIME_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 158

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.16 Set MAC Address
The Set MAC Address function can be used to store a MAC address into the Security Memory. The
existing MAC address will be overwritten. If no Security Memory is available, the return packet
indicates that the address could not be stored persistently. In that case, the MAC address is stored
temporarily and is lost after power-on-reset (POR).

NOTE The existing MAC address, which is stored in the Security Memory, will be overwritten.

NOTE The netX firmware stores only one MAC address. This address incremented by one is used
for the second Ethernet port, incremented by 2 for the third port and so on. So one netX chip
uses up to 4 MAC addresses base on the initial MAC address stored in the Security Memory.

4.16.1 Set MAC Address Request

The application uses the following packet in order to set a MAC Address for any firmware. The packet
is send through the system mailbox to the netX operating system.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 12 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EEE

Command
Set MAC Address

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulParam UINT32
0x00000001

else

Parameter Bit Field
Store Address Persistently
Reserved

 abMacAddr[6] UINT8 MAC Address

 abPad[2] UINT8 0x00 Pad Bytes, Set to Zero

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 SET MAC ADDRESS REQUEST
 #define RCX_SET_MAC_ADDR_REQ 0x00001EEE

 STORE MAC ADDRESS PERSISTENTLY
 #define RCX_STORE_MAC_ADDRESS 0x00000001

 FORCE MAC ADDRESS #define RCX_FORCE_MAC_ADDRESS 0x00000002

netX DPM Interface Manual Dual-Port Memory Function • 159

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_SET_MAC_ADDR_REQ_DATA_Ttag
{
 UINT32 ulParam; /* parameter bit field */
 UINT8 abMacAddr[6]; /* MAC address */
 UINT8 abPad[2]; /* pad bytes, set to zero */
} RCX_SET_MAC_ADDR_REQ_DATA_T;

typedef struct RCX_SET_MAC_ADDR_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_SET_MAC_ADDR_REQ_DATA_T tData; /* packet data */
} RCX_SET_MAC_ADDR_REQ_T;

4.16.2 Set MAC Address Confirmation

The system channel returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EEF

Confirmation
Set MAC Address

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 SET MAC ADDRESS CONFIRMATION

 #define RCX_SET_MAC_ADDR_CNF RCX_SET_MAC_ADDR_REQ+1

Packet Structure Reference
typedef struct RCX_SET_MAC_ADDR_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} typedef struct RCX_SET_MAC_ADDR_CNF_T;

Data Field

There is no data field returned in the Set MAC Address confirmation packet.

netX DPM Interface Manual Dual-Port Memory Function • 160

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.17 Start Firmware on netX
The following packet is used to start (or instantiate for that matter) a firmware on netX when this
firmware is executed from RAM. If the netX firmware is executed from Flash, this packet has no effect.

4.17.1 Start Firmware Request

The application uses the following packet in order to start a firmware that is executed from RAM. The
packet is send through the system mailbox to the netX operating system. The channel number has to
be filled in to identify the firmware.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EC4

Command
Instantiate Firmware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelNo UINT32 0 … 3

Channel Number
Communication Channel

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 INSTANTIATE FIRMWARE REQUEST
 #define RCX_CHANNEL_INSTANTIATE_REQ 0x00001EC4

 COMMUNICATION CHANNEL 0 #define RCX_COMM_CHANNEL_0 0x00000000

 COMMUNICATION CHANNEL 1 #define RCX_COMM_CHANNEL_1 0x00000001

 COMMUNICATION CHANNEL 2 #define RCX_COMM_CHANNEL_2 0x00000002

 COMMUNICATION CHANNEL 3 #define RCX_COMM_CHANNEL_3 0x00000003

netX DPM Interface Manual Dual-Port Memory Function • 161

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_CHANNEL_INSTANTIATE_REQ_DATA_Ttag
{
 UINT32 ulChannelNo; /* channel number */
} RCX_CHANNEL_INSTANTIATE_REQ_DATA_T;

typedef struct RCX_CHANNEL_INSTANTIATE_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_CHANNEL_INSTANTIATE_REQ_DATA_T tData; /* packet data */
} RCX_CHANNEL_INSTANTIATE_REQ_T;

4.17.2 Start Firmware Confirmation

The system channel returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EC5

Confirmation
Instantiate Firmware

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 INSTANTIATE FIRMWARE CONFIRMATION

 #define RCX_CHANNEL_INSTANTIATE_CNF RCX_CHANNEL_INSTANTIATE_REQ+1

Packet Structure Reference
typedef struct RCX_CHANNEL_INSTANTIATE_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_CHANNEL_INSTANTIATE_CNF_T;

Data Field

There is no data field returned in the Start Firmware confirmation packet.

netX DPM Interface Manual Dual-Port Memory Function • 162

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.18 Register / Unregister an Application
This section describes the method to register or unregister with a protocol stack that is executed in the
context of the RCX operating system. For the host application it is necessary to register with a protocol
stack on netX in order to receive unsolicited data telegrams. If not registered, the application cannot
receive such data telegrams from the protocol stack. The protocol stack returns these packets to the
originator with an error code. Otherwise without processing these packets, they would queue up in the
mailbox; the request would time out and causing a network failure.

The application can use the Source Queue Handle (ulSrc) to identify itself to benefit from the routing
capabilities of the packet header. The application source queue handle is copied into every indication
packet that is sent to the host application helping identifying the intended receiver. Otherwise 0 (zero)
is used for the source queue handle.

There is only one application that can register with the protocol stack at any given time. Other attempts
to register in parallel are rejected.

4.18.1 Register Application Request

The application uses the following packet in order to register itself with a protocol stack. The packet is
send through the channel mailbox to the protocol stack.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F10

Command
Register Application

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 REGISTER APPLICATION REQUEST
 #define RCX_REGISTER_APP_REQ 0x00002F10

Packet Structure Reference
typedef struct RCX_REGISTER_APP_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_REGISTER_APP_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 163

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.18.2 Register Application Confirmation

The system channel returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F11

Confirmation
Register Application

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 REGISTER APPLICATION CONFIRMATION
 #define RCX_REGISTER_APP_CNF RCX_REGISTER_APP_REQ+1

Packet Structure Reference
typedef struct RCX_REGISTER_APP_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_REGISTER_APP_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 164

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.18.3 Unregister Application Request

The application uses the following packet in order to undo the registration from above. The packet is
send through the channel mailbox to the protocol stack.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F12

Command
Unregister Application

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 UNREGISTER APPLICATION REQUEST
 #define RCX_UNREGISTER_APP_REQ 0x00002F12

Packet Structure Reference
typedef struct RCX_UNREGISTER_APP_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_UNREGISTER_APP_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 165

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.18.4 Unregister Application Confirmation

The system channel returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F13

Confirmation
Unregister Application

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 UNREGISTER APPLICATION CONFIRMATION
 #define RCX_UNREGISTER_APP_CNF RCX_UNREGISTER_APP_REQ+1

Packet Structure Reference
typedef struct RCX_UNREGISTER_APP_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_UNREGISTER_APP_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 166

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.19 Delete Configuration from the System
A slave protocol stack, which was configured via warm-start packet, stores is configuration settings in
RAM. During startup the firmware reads these configuration settings and processes them accordingly.

The following packet is used to delete this configuration from RAM. The configuration cannot be
deleted, as long as the Configuration Locked flag in ulCommunicationCOS is set. Deleting the
configuration settings will not interrupt data exchange with master devices. After channel initialization,
the protocol stack does not startup properly due to the missing configuration. The packet has no effect,
if the protocol stack is configured with a static database, which is a file in the netX operating system
RCX. If the protocol stack uses a static database (like a master firmware), the packet to delete a file
from the system in has to be used (see page 147 for details).

4.19.1 Delete Configuration Request

The application uses the following packet in order to delete the current configuration of the protocol
stack. The packet is send through the channel mailbox to the netX operating system.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F14

Command
Delete Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 DELETE CONFIGURATION REQUEST
 #define RCX_DELETE_CONFIG_REQ 0x00002F14

Packet Structure Reference
typedef struct RCX_DELETE_CONFIG_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_DELETE_CONFIG_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 167

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.19.2 Delete Configuration Confirmation

The system channel returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F15

Confirmation
Delete Configuration

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 DELETE CONFIGURATION CONFIRMATION
 #define RCX_DELETE_CONFIG_CNF RCX_DELETE_CONFIG_REQ+1

Packet Structure Reference
typedef struct RCX_DELETE_CONFIG_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_DELETE_CONFIG_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 168

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.20 System Channel Information Blocks
The following packets are used to make certain data blocks available for read access through the
mailbox channel. These blocks are located in the system channel only. Reading the data blocks might
be useful if a configuration tool like SYCON.net is connected via USB or another serial interface to the
netX hardware.

If the requested data block exceeds the maximum mailbox size, the block is transferred in a
sequenced or fragmented manner (see page 74 for details).

4.20.1 Read System Information Block

The packet outlined in this section is used to request System Information Block. Therefore it is passed
through the system mailbox.

4.20.1.1 Read System Information Block Request

This packet is used to request the System Information Block as outlined on page 28.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E32

Command
Read System Information Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 READ SYSTEM INFORMATION BLOCK REQUEST
 #define RCX_SYSTEM_INFORMATION_BLOCK_REQ 0x00001E32

Packet Structure Reference
typedef struct RCX_READ_SYS_INFO_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_READ_SYS_INFO_BLOCK_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 169

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.20.1.2 Read System Information Block Confirmation

The following confirmation packet is returned. The structure in the data portion of the packet is the
System Information Block from section 3.1.1.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
48
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E33

Confirmation
Read System Information Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tSystemInfo Structure System Information Block

(see page 28 for details)

 READ SYSTEM INFORMATION BLOCK CONFIRMATION
 #define RCX_SYSTEM_INFORMATION_BLOCK_CNF
 RCX_SYSTEM_INFORMATION_BLOCK_REQ+1

Packet Structure Reference
typedef struct RCX_READ_SYS_INFO_BLOCK_CNF_DATA_Ttag
{
 NETX_SYSTEM_INFO_BLOCK_T tSystemInfo; /* packet data */
} RCX_READ_SYS_INFO_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_SYS_INFO_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_SYS_INFO_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_SYS_INFO_BLOCK_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 170

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.20.2 Read Channel Information Block

The packet outlined in this section is used to request Channel Information Block. Therefore it is
passed through the system mailbox. There is one packet for each of the channels. The channels are
identified by their channel ID or port number. The total number of blocks is part of the structure of the
Channel Information Block of the system channel (see there).

4.20.2.1 Read Channel Information Block Request

This packet is used to request one section of the Channel Information Block as outlined on page 35.
Using channel ID, the application can request one block per packet.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E34

Command
Read Channel Information Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelId UINT32 0 … 7

Channel Identifier
Port Number, Channel Number

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 READ CHANNEL INFORMATION BLOCK REQUEST
 #define RCX_CHANNEL_INFORMATION_BLOCK_REQ 0x00001E34

Packet Structure Reference
typedef struct RCX_READ_CHNL_INFO_BLOCK_REQ_DATA_Ttag
 UINT32 ulChannelId; /* channel id */
} RCX_READ_CHNL_INFO_BLOCK_REQ_DATA_T;

typedef struct RCX_READ_CHNL_INFO_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_CHNL_INFO_BLOCK_REQ_DATA_T tData; /* packet data */
} RCX_READ_CHNL_INFO_BLOCK_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 171

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.20.2.2 Read Channel Information Block Confirmation

The following confirmation packet is returned by the firmware. The structure in the data portion of the
packet is either the system channel, handshake channel communication channel or the application
channel.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
16
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E35

Confirmation
Read Channel Information Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tChannelInfo Structure Channel Information Block

(see page 35 for details)

 READ CHANNEL INFORMATION BLOCK CONFIRMATION
 #define RCX_CHANNEL_INFORMATION_BLOCK_CNF
 RCX_CHANNEL_INFORMATION_BLOCK_REQ+1

Packet Structure Reference
typedef union NETX_CHANNEL_INFO_BLOCKtag
{
 NETX_SYSTEM_CHANNEL_INFO tSystem;
 NETX_HANDSHAKE_CHANNEL_INFO tHandshake;
 NETX_COMMUNICATION_CHANNEL_INFO tCom;
 NETX_APPLICATION_CHANNEL_INFO tApp;
} NETX_CHANNEL_INFO_BLOCK;

typedef struct RCX_READ_CHNL_INFO_BLOCK_CNF_DATA_Ttag
{
 NETX_CHANNEL_INFO_BLOCK tChannelInfo; /* channel info block */
} RCX_READ_CHNL_INFO_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_CHNL_INFO_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_CHNL_INFO_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_CHNL_INFO_BLOCK_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 172

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.20.3 Read System Control Block

The packet outlined in this section is used to request System Control Block. Therefore it is passed
through the system mailbox.

4.20.3.1 Read System Control Block Request

This packet is used to request the System Control Block as outlined on page 43.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E36

Command
Read System Control Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 READ SYSTEM CONTROL BLOCK REQUEST
 #define RCX_SYSTEM_CONTROL_BLOCK_REQ 0x00001E36

Packet Structure Reference
typedef struct RCX_READ_SYS_CNTRL_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_READ_SYS_CNTRL_BLOCK_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 173

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.20.3.2 Read System Control Block Confirmation

The following confirmation packet is returned by the firmware. The structure in the data portion of the
packet is the same as outlined in section 3.1.5.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
8
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E37

Confirmation
Read System Control Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

 tSystem
Control Structure System Control Block

(see page 43 for details)

 READ SYSTEM CONTROL BLOCK CONFIRMATION
 #define RCX_SYSTEM_CONTROL_BLOCK_CNF
 RCX_SYSTEM_CONTROL_BLOCK_REQ+1

Packet Structure Reference
typedef struct RCX_READ_SYS_CNTRL_BLOCK_CNF_DATA_Ttag
{
 NETX_SYSTEM_CONTROL_BLOCK_T tSystemControl;
} RCX_READ_SYS_CNTRL_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_SYS_CNTRL_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_SYS_CNTRL_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_SYS_CNTRL_BLOCK_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 174

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.20.4 Read System Status Block

The packet outlined in this section is used to request System Status Block. Therefore it is passed
through the system mailbox.

4.20.4.1 Read System Status Block Request

This packet is used to request the System Status Block as outlined on page 44.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E38

Command
Read System Status Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 READ SYSTEM STATUS BLOCK REQUEST
 #define RCX_SYSTEM_CONTROL_BLOCK_REQ 0x00001E38

Packet Structure Reference
typedef struct RCX_READ_SYS_STATUS_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_READ_SYS_STATUS_BLOCK_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 175

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.20.4.2 Read System Status Block Confirmation

The following confirmation packet is returned by the firmware. The structure in the data portion of the
packet is the same as outlined in section 3.1.6.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
64
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E39

Confirmation
Read System Status Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tSystemState Structure System Status Block

(see page 44 for details)

 READ SYSTEM STATUS BLOCK CONFIRMATION
 #define RCX_SYSTEM_CONTROL_BLOCK_CNF
 RCX_SYSTEM_CONTROL_BLOCK_REQ+1

Packet Structure Reference
typedef struct RCX_READ_SYS_STATUS_BLOCK_CNF_DATA_Ttag
{
 NETX_SYSTEM_STATUS_BLOCK_T tSystemState;
} RCX_READ_SYS_STATUS_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_SYS_STATUS_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_SYS_STATUS_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_SYS_STATUS_BLOCK_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 176

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.21 Communication Channel Information Blocks
The following packets are used to make certain data blocks available for read access through the
communication channel mailbox. These blocks are located in the communication channel. Reading the
data blocks might be useful if a configuration tool like SYCON.net is connected via USB or another
serial interface to the netX hardware.

If the requested data block exceeds the maximum mailbox size, the block is transferred in a
sequenced or fragmented manner (see page 74 for details).

4.21.1 Read Communication Control Block

4.21.1.1 Read Communication Control Block Request

This packet is used to request the Communication Control Block as outlined on page 52. The firmware
ignores the Channel Identifier ulChannelId, if the packet is passed through the channel mailbox.
The length however, has to be set to 4 in any case.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000
0x00000020

Destination Queue Handle
SYSTEM
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001E3A

Command
Read Communication Control Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelId UINT32 0 … 7

Channel Identifier
Port Number, Channel Number

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 READ COMMUNICATION CONTROL BLOCK REQUEST
 #define RCX_CONTROL_BLOCK_REQ 0x00001E3A

netX DPM Interface Manual Dual-Port Memory Function • 177

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_READ_COMM_CNTRL_BLOCK_REQ_DATA_Ttag
{
 UINT32 ulChannelId; /* channel id */
} RCX_READ_COMM_CNTRL_BLOCK_REQ_DATA_T;

typedef struct RCX_READ_COMM_CNTRL_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_COMM_CNTRL_BLOCK_REQ_DATA_T tData; /* packet data */
} RCX_READ_COMM_CNTRL_BLOCK_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 178

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.21.1.2 Read Communication Control Block Confirmation

The following confirmation packet is returned by the firmware. The structure in the data portion of the
packet is identical to the one outlined in section 0.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
8
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001E3B

Confirmation
Read Communication Control Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tControl Structure Communication Control Block

(see page 52 for details)

 READ COMMUNICATION CONTROL BLOCK CONFIRMATION
 #define RCX_CONTROL_BLOCK_CNF RCX_CONTROL_BLOCK_REQ+1

Packet Structure Reference
typedef struct RCX_READ_COMM_CNTRL_BLOCK_CNF_DATA_Ttag
{
 NETX_CONTROL_BLOCK_T tControl; /* control block */
} RCX_READ_COMM_CNTRL_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_COMM_CNTRL_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_COMM_CNTRL_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_COMM_CNTRL_BLOCK_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 179

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.21.2 Read Common Status Block

4.21.2.1 Read Common Status Block Request

This packet is used to request the common status block as outlined on page 54. The firmware ignores
the Channel Identifier ulChannelId, if the packet is passed through the channel mailbox. The length
however, has to be set to 4 in any case.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000
0x00000020

Destination Queue Handle
SYSTEM
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EFC

Command
Read Common Status Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelId UINT32 0 … 7

Channel Identifier
Port Number, Channel Number

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 READ COMMON STATUS BLOCK REQUEST
 #define RCX_DPM_GET_COMMON_STATE_REQ 0x00001EFC

Packet Structure Reference
typedef struct RCX_READ_COMMON_STS_BLOCK_REQ_DATA_Ttag
{
 UINT32 ulChannelId; /* channel id */
} RCX_READ_COMMON_STS_BLOCK_REQ_DATA_T;

typedef struct RCX_READ_COMMON_STS_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_COMMON_STS_BLOCK_REQ_DATA_T tData; /* packet data */
} RCX_READ_COMMON_STS_BLOCK_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 180

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.21.2.2 Read Common Status Block Confirmation

The following confirmation packet is returned by the firmware. The structure in the data portion of the
packet is identical to the one outlined in section 3.2.5.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
64
0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EFD

Confirmation
Read Common Status Block

ulExt UINT32
0x00000000

Extension
No Sequenced Packet

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

tCommonStatus Structure Common Status Block

(see page 54 for details)

 READ COMMON STATUS BLOCK CONFIRMATION
 #define RCX_DPM_GET_COMMON_STATE_CNF
 RCX_DPM_GET_COMMON_STATE_REQ+1

Packet Structure Reference
typedef struct RCX_READ_COMMON_STS_BLOCK_CNF_DATA_Ttag
{
 NETX_COMMON_STATUS_BLOCK_T tCommonStatus; /* common status */
} RCX_READ_COMMON_STS_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_COMMON_STS_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_COMMON_STS_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_COMMON_STS_BLOCK_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 181

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.21.3 Read Extended Status Block

4.21.3.1 Read Extended Status Block Request

This packet is used to request the Extended Status Block as outlined on page 60. The firmware
ignores the Channel Identifier ulChannelId, if the packet is passed through the channel mailbox.
The length however, has to be set to 4 in any case.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000
0x00000020

Destination Queue Handle
SYSTEM
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001EFE

Command
Read Extended Status Block

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulChannelId UINT32 0 … 7

Channel Identifier
Port Number, Channel Number

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 READ EXTENDED STATUS BLOCK REQUEST
 #define RCX_DPM_GET_EXTENDED_STATE_REQ 0x00001EFE

Packet Structure Reference
typedef struct RCX_READ_EXT_STS_BLOCK_REQ_DATA_Ttag
{
 UINT32 ulChannelId; /* channel id */
} RCX_READ_EXT_STS_BLOCK_REQ_DATA_T;

typedef struct RCX_READ_EXT_STS_BLOCK_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_EXT_STS_BLOCK_REQ_DATA_T tData; /* packet data */
} RCX_READ_EXT_STS_BLOCK_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 182

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.21.3.2 Read Extended Status Block Confirmation

The following confirmation packet is returned by the firmware. The structure in the data portion of the
packet is identical to the one outlined in section 3.2.6.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
1 … 432

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001EFF

Confirmation
Read Extended Status Block

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

 tExtended
Status Structure Extended Status Block

(see page 60 for details)

 READ EXTENDED STATUS BLOCK CONFIRMATION
 #define RCX_DPM_GET_EXTENDED_STATE_CNF
 RCX_DPM_GET_EXTENDED_STATE_REQ+1

Packet Structure Reference
typedef struct RCX_READ_EXT_STS_BLOCK_CNF_DATA_Ttag
{
 NETX_EXTENDED_STATUS_BLOCK_T tExtendedStatus;
} RCX_READ_EXT_STS_BLOCK_CNF_DATA_T;

typedef struct RCX_READ_EXT_STS_BLOCK_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_READ_EXT_STS_BLOCK_CNF_DATA_T tData; /* packet data */
} RCX_READ_EXT_STS_BLOCK_CNF_T;

netX DPM Interface Manual Dual-Port Memory Function • 183

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.22 Read Performance Data through Packets

4.22.1 Read Performance Data Request

This packet is used to read performance data from the netX operating system.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000

Destination Queue Handle
SYSTEM

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 8 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00001ED4

Command
Read Performance Data

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 usStartToken UINT16 0 … 0xFFFF

 usTokenCount UINT16 0 … 0xFFFF

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 READ PERFORMANCE COUNTER REQUEST
 #define RCX_GET_PERF_COUNTERS_REQ 0x00001ED4

Packet Structure Reference
typedef struct RCX_GET_PERF_COUNTERS_REQ_DATA_Ttag
{
 UINT16 usStartToken; /* */
 UINT16 usTokenCount; /* */
} RCX_GET_PERF_COUNTERS_REQ_DATA_T;

typedef struct RCX_GET_PERF_COUNTERS_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_GET_PERF_COUNTERS_REQ_DATA_T tData; /* packet data */
} RCX_GET_PERF_COUNTERS_REQ_T;

netX DPM Interface Manual Dual-Port Memory Function • 184

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

4.22.2 Read Performance Data Confirmation

The following confirmation packet is returned by the firmware.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4 + (8 x (1+n))

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00001ED4

Confirmation
Read Performance Data

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 0x00000000 Routing Information (not used)

tData Structure Information

 usStartToken UINT16 0 … 0xFFFF

 usTokenCount UINT16 0 … 0xFFFF

 tPerfSystem
Uptime[0] Structure RCX_PERF_COUNTER_DATA_T

for structure definition see below

 … … …

 tPerfSystem
Uptime[n-1] Structure RCX_PERF_COUNTER_DATA_T

for structure definition see below

 READ PERFORMANCE COUNTER CONFIRMATION
 #define RCX_GET_PERF_COUNTERS_CNF RCX_GET_PERF_COUNTERS_REQ+1

netX DPM Interface Manual Dual-Port Memory Function • 185

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_PERF_COUNTER_DATA_Ttag
{
 UINT32 ulNanosecondsLower; /* */
 UINT32 ulNanosecondsUpper; /* */
} RCX_PERF_COUNTER_DATA_T;

typedef struct RCX_GET_PERF_COUNTERS_CNF_DATA_Ttag
{
 UINT16 usStartToken; /* */
 UINT16 usTokenCount; /* */
 RCX_PERF_COUNTER_DATA_T tPerfSystemUptime[n-1]; /* */
 /* dynamic array, length is given indirectly by ulLen */
} RCX_GET_PERF_COUNTERS_CNF_DATA_T;

typedef struct RCX_GET_PERF_COUNTERS_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_GET_PERF_COUNTERS_CNF_DATA_T tData; /* packet data */
} RCX_GET_PERF_COUNTERS_CNF_T;

netX DPM Interface Manual Diagnostic • 186

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5 Diagnostic

5.1 Versioning
Firmware and operating system versions consist of four parts. The version string is separated into a
Major, Minor, Build and Revision section.

The major number is increased for significant enhancements in functionality (backward compatibility
cannot be assumed); the minor number is incremented when new features or enhancement have been
added (backward compatibility is intended). The third number denotes bug fixes or a new firmware
build. The revision number is not used and set to zero. As an example, a firmware may at time jump
from version 1.80 to 1.85 indicating that significant features have been added.

The build number is set to one again, after the major number has been incremented. A zero value is
not valid for the build number.

Version Structure
typedef struct RCX_FW_VERSION_Ttag
{
 UINT16 usMajor; /* major version number */
 UINT16 usMinor; /* minor version number */
 UINT16 usBuild; /* build number */
 UINT16 usRevision; /* revision number */
} RCX_FW_VERSION_T;

netX DPM Interface Manual Diagnostic • 187

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.2 Network Connection State
This section explains how an application can obtain connection status information about slave devices
from a master firmware. Hence the packets below are applicable to master firmware only. A slave
firmware does not support this function and thus rejects such a request with an error code.

5.2.1 Mechanism

The application can request information about the status of network slaves in regards of their cyclic
connection. Non-cyclic connections are not handled here. The netX firmware returns a list of handles
that each represents a slave device. Note that a handle of a slave is not its MAC ID, station or node
address, nor an IP address. The following lists are available:

 List of Configured Slaves
This list represents all network nodes that are configured in the database that is created by
SYCON.net or is transferred to the channel firmware by the host application during startup.

 List of Activated Slaves
This list holds network nodes that are configured in the database and are actively communicating
to the network master. Note that is not a 'Life List'! There might be other nodes on the network, but
those do not show up in this list.

 List of Faulted Slaves
This list contains handles of all configured nodes that currently encounter some sort of connection
problem or are otherwise faulty or even disconnected.

First the application sends a packet to the master firmware in order to obtain a handle for each of the
slaves depending on the type of list required. Note that these handles may change after
reconfiguration or power-on reset. Using such a handle in a second request, the host application
receives information about the slave's current network status. The confirmation packet returns a data
field that is specific for the underlying fieldbus. The data returned is identified by a unique identification
number. The identification number references a specific structure. Identification number and structure
are described in the fieldbus related documentation and the corresponding C header file.

In a flawless network (all configured slaves are function properly) the list of configured slaves is
identical to the list of activated slaves. Both lists contain the same handles. In case of a slave failure,
the handle of this slave appears in the list of faulted slaves and not in the list of activated slaves. The
number of handles in the list of configured slaves remains constant.

The reason for a slave to fault differs from fieldbus to fieldbus. Obvious causes are a disconnected
network cable and inconsistent configuration or parameter data. Some fieldbus systems are capable of
transferring diagnostic information across the network in the event a node encounters some sort of
problem or fault. The level of diagnostic details returned in the confirmation packet heavily depends on
the underlying fieldbus system. For details refer to the fieldbus specific documentation.

netX DPM Interface Manual Diagnostic • 188

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.2.2 Obtain List of Slave Handles

5.2.2.1 Get Slave Handle Request

The host application uses the packet below in order to request a list of slaves depending on the
requested type of list (configured, activated or faulted).

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F08

Command
Get Slave Handle

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

ulParam UINT32 0x00000001
0x00000002
0x00000003

Parameter
List of Configured Slaves
List of Activated Slaves
List of Faulted Slaves

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 GET SLAVE HANDLE REQUEST
 #define RCX_GET_SLAVE_HANDLE_REQ 0x00002F08

 LIST OF CONFIGURED SLAVES
 #define RCX_LIST_CONF_SLAVES 0x00000001

 LIST OF ACTIVATED SLAVES #define RCX_LIST_ACTV_SLAVES 0x00000002

 LIST OF FAULTED SLAVES #define RCX_LIST_FAULTED_SLAVES 0x00000003

Packet Structure Reference
typedef struct RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_Ttag
{
 UINT32 ulParam; /* requested list of slaves */
} RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T;

typedef struct RCX_PACKET_GET_SLAVE_HANDLE_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T tData; /* packet data */
} RCX_PACKET_GET_SLAVE_HANDLE_REQ_T;

netX DPM Interface Manual Diagnostic • 189

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.2.2.2 Get Slave Handle Confirmation

The master firmware (channel firmware) returns a list of handles. Each of the handles represents a
slave device depending on the requested type of list (configured, activated or faulted).

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4 x (1+n)

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F09

Confirmation
Get Slave Handle

ulExt UINT32
0x00000000

Extension:
No Sequenced Packet

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

ulParam UINT32 0x00000001
0x00000002
0x00000003

Parameter
List of Configured Slaves
List of Activated Slaves
List of Faulted Slaves

 aulHandle[n] UINT32 0 … 0xFFFFFFFF Slave Handle, Number of Handles is n

 GET SLAVE HANDLE CONFIRMATION

 #define RCX_GET_SLAVE_HANDLE_CNF RCX_GET_SLAVE_HANDLE_REQ+1

Packet Structure Reference
typedef struct RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_Ttag
{
 UINT32 ulParam; /* list of slaves */
 /* list of handles follows here */
 /* UINT32 aulHandle[]; */
} RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T

typedef struct RCX_PACKET_GET_SLAVE_HANDLE_REQ_Ttag
{
 RCX_RACKET_HEADER tHead; /* packer header */
 RCX_PACKET_GET_SLAVE_HANDLE_REQ_DATA_T tData; /* packet data */
} RCX_PACKET_GET_SLAVE_HANDLE_REQ_T;

netX DPM Interface Manual Diagnostic • 190

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.2.3 Obtain Slave Connection Information

5.2.3.1 Get Slave Connection Information Request

Using the handles from the section above, the application can request network status information for
each of the configured network slaves.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F0A

Command
Get Slave Connection Information Request

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

tData Structure Information

 ulHandle UINT32 0 … 0xFFFFFFFF Slave Handle

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 SLAVE CONNECTION INFORMATION REQUEST
 #define RCX_GET_SLAVE_CONN_INFO_REQ 0x00002F0A

Packet Structure Reference
typedef struct RCX_GET_SLAVE_CONN_INFO_REQ_DATA_Ttag
{
 UINT32 ulHandle; /* slave handle */
} RCX_GET_SLAVE_CONN_INFO_REQ_DATA_T;

typedef struct RCX_GET_SLAVE_CONN_INFO_REQ_Ttag
{
 RCX_PACKET_HEADER tHead; /* packer header */
 RCX_GET_SLAVE_CONN_INFO_REQ_DATA_T tData; /* packet data */
} RCX_GET_SLAVE_CONN_INFO_REQ_T;

netX DPM Interface Manual Diagnostic • 191

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.2.3.2 Get Slave Connection Information Confirmation

The data returned in this packet is specific for the underlying fieldbus. It is identified by a unique
identification number. The identification number references a specific structure. Identification number
and structure are described in the fieldbus related documentation and the corresponding C header file.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
8+sizeof(tState)

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F0B

Confirmation
Get Slave Connection Information

ulExt UINT32
0x00000000

Extension:
No Sequenced Packet

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulHandle UINT32 0 … 0xFFFFFFFF Slave Handle

 ulStructId UINT32 0 … 0xFFFFFFFF Structure Identification Number

tState STRUCT Fieldbus Specific Slave Status Information

(Refer to Fieldbus Documentation)

 GET SLAVE CONNECTION INFORMATION CONFIRMATION

 #define RCX_GET_SLAVE_CONN_INFO_CNF RCX_GET_SLAVE_CONN_INFO_REQ+1

Packet Structure Reference
typedef struct RCX_GET_SLAVE_CONN_INFO_CNF_DATA_Ttag
{
 UINT32 ulHandle; /* slave handle */
 UINT32 ulStructId; /* structure identification number */
 /* fieldbus specific slave status information follows here */
} RCX_GET_SLAVE_CONN_INFO_CNF_DATA_T;

typedef struct RCX_GET_SLAVE_CONN_INFO_CNF_Ttag
{
 RCX_PACKET_HEADER tHead; /* packet header */
 RCX_GET_SLAVE_CONN_INFO_CNF_DATA_T tData; /* packet data */
} RCX_GET_SLAVE_CONN_INFO_CNF_T;

netX DPM Interface Manual Diagnostic • 192

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Fieldbus Specific Slave Status Information

The structure tState contains at least a field that helps to unambiguously identify the node. Usually it is
its network address, like MAC ID, IP address or station address. If applicable, the structure may hold a
name string. For details refer to the fieldbus documentation.

netX DPM Interface Manual Diagnostic • 193

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.3 Obtain I/O Data Size Information
The application can request information about the length of the configured IO data image. The length
information is useful to adjust copy functions in terms of the amount of data that is being moved and
therewith streamline the copy process. Among other things, the packet returns the offset of the first
byte used in the I/O image and the length of configured I/O space.

5.3.1 Get DPM I/O Information Request

This packet is used to obtain offset and length of the used I/O data space of all process data areas for
the requested channel.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000020

Destination Queue Handle
CHANNEL

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F0C

Command
Get I/O Data Information

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 GET DPM I/O INFORMATION REQUEST
 #define RCX_GET_DPM_IO_INFO_REQ 0x00002F0C

Packet Structure Reference
typedef struct RCX_GET_DPM_IO_INFO_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_GET_DPM_IO_INFO_REQ_T;

netX DPM Interface Manual Diagnostic • 194

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.3.2 Get DPM I/O Information Confirmation

The confirmation packet returns offset and length of the requested input and the output data area. The
applicatction may receive the packet in a sequenced manner. So the ulExt field has to be evaluated!

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32
4+(20 x n)

0

Packet Data Length (in Bytes)
If ulSta = RCX_S_OK
Otherwise

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code see Section 7

ulCmd UINT32
0x00002F0D

Confirmation
Get I/O Data Information

ulExt UINT32
0x00000000
0x00000080
0x000000C0
0x00000040

Extension
No Sequenced Packet
First Packet of Sequence
Sequenced Packet
Last Packet of Sequence

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

tData Structure Information

 ulBlockNum UINT32 0 … 10 Number n of Block Definitions Below

tIoBlock[n] Array of

Structrue
I/O Block Definition Structure(s)
RCX_IO_BLOCK_INFO_T

 GET DPM I/O INFORMATION CONFIRMATION

 #define RCX_GET_DPM_IO_INFO_CNF RCX_GET_DPM_IO_INFO_REQ+1

netX DPM Interface Manual Diagnostic • 195

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_IO_BLOCK_INFO_Ttag
{
 UINT32 ulSubblockIndex; /* index of sub block */
 UINT32 ulType; /* type of sub block */
 UINT16 usFlags; /* flags of the sub block */
 UINT16 usReserved; /* reserved */
 UINT32 ulOffset; /* offset of I/O data in bytes */
 UINT32 ulLength; /* length of I/O data in bytes */
} RCX_DPM_IO_BLOCK_INFO_T;

typedef struct RCX_GET_DPM_IO_INFO_CNF_DATA_Ttag
{
 UINT32 ulBlockNum; /* number of definitions follow */
/*RCX_DPM_IO_BLOCK_INFO_T tIoBlock[n]; I/O block definition */
} RCX_GET_DPM_IO_INFO_CNF_DATA_T;

typedef struct RCX_GET_DPM_IO_INFO_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
 RCX_GET_DPM_IO_INFO_CNF_DATA_T tData; /* packet data */
} RCX_GET_DPM_IO_INFO_CNF_T;

Sub Block Index

This field holds the number of the block. It is the same number returned in the packet described on
page 96.

Sub Block Type

This field is used to identify the type of block. The following types are defined.

 UNDEFINED #define RCX_BLOCK_UNDEFINED 0x0000

 UNKNOWN #define RCX_BLOCK_UNKNOWN 0x0001

 PROCESS DATA IMAGE #define RCX_BLOCK_DATA_IMAGE 0x0002

 HIGH PRIORITY DATA IMAGE #define RCX_BLOCK_DATA_IMAGE_HI_PRIO 0x0003

 MAILBOX #define RCX_BLOCK_MAILBOX 0x0004

 CONTROL #define RCX_BLOCK_CNTRL_PARAM 0x0005

 COMMON STATUS #define RCX_BLOCK_COMMON_STATE 0x0006

 EXTENDED STATUS #define RCX_BLOCK_EXTENDED_STATE 0x0007

 USER #define RCX_BLOCK_USER 0x0008

 RESERVED #define RCX_BLOCK_RESERVED 0x0009

 Others are reserved 0x000A … 0xFFFF

netX DPM Interface Manual Diagnostic • 196

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Flags

The flags field holds information regarding the data transfer direction from the view point of the
application. The following flags are defined.

 DIRECTION MASK #define RCX_DIRECTION_MASK 0x000F

 UNDEFINED #define RCX_DIRECTION_UNDEFINED 0x0000

 IN (netX to Host System) #define RCX_DIRECTION_IN 0x0001

 OUT (Host System to netX) #define RCX_DIRECTION_OUT 0x0002

 IN - OUT (Bi-Directional) #define RCX_DIRECTION_IN_OUT 0x0003

 Others are reserved

The transmission type field in the flags location holds the type of how to exchange data with this block.
The choices are:

 TRANSMISSION MASK #define RCX_TRANSMISSION_TYPE_MASK 0x00F0

 UNDEFINED #define RCX_TRANSMISSION_TYPE_UNDEFINED 0x0000

 DPM (Dual-Port Memory) #define RCX_TRANSMISSION_TYPE_DPM 0x0010

 DMA (Direct Memory Access) #define RCX_TRANSMISSION_TYPE_DMA 0x0020

 Others are reserved

Offset

This field holds the offset of the first byte used in the data image based on the start offset of the I/O
data block.

Length

The length field holds the number of bytes used in the process data image.

netX DPM Interface Manual Diagnostic • 197

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.4 LEDs
There is only one system LED (SYS LED) per netX chip. The SYS LED is always present and
described below. But there are up to 4 LEDs per communication and application channel. These
LEDs, like the communication channel LED (COM LED), are network specific and are described in a
separate document.

5.4.1 System LED

The system status LED (SYS LED) is always available. It indicates the state of the system and its
protocol stacks. The following blink patterns are defined:

Color State Meaning

Flashing Cyclically at 1 Hz netX is in Boot Loader Mode and is Waiting for Firmware
Download

Yellow

Solid netX is in Boot Loader Mode, but an Error Occurred

Green Solid netX Operating System is Running and a Firmware is Started

Off N/A netX has no Power Supply or Hardware Defect Detected

Table 42 - SYS LED

5.4.2 Communication Channel LEDs

The meaning of the communication channel LEDs (COM LED) depends on the actual implementation
and is describted in a separate manual.

netX DPM Interface Manual Diagnostic • 198

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

5.4.3 Force LED Flashing

The following packets are used for diagnosis purposes. It allows the user to identify a communication
module or PC card. The firmware flashes a LED for 10 s at 0.25 Hz. There is one packtet that forces
the firmware to flash the System LED (SYS LED) and another that forces the firmware to flash the
protocol LED (COM LED).

5.4.3.1 Force LED Flashing Request

If the packet outlined below is send to the RCX operating system / system channel (ulDest =
0x00000000) the module flashes the System LED. If the packet is send to a communication channel
the protocol LED is being flashed.

Structure Information

Type: Request

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32
0x00000000
0x00000001
0x00000002
0x00000003
0x00000004
0x00000020

Destination Queue Handle
SYSTEM
Communication Channel 0
Communication Channel 1
Communication Channel 2
Communication Channel 3
'Local' Channel

ulSrc UINT32 X Source Queue Handle

ulDestId UINT32 0x00000000 Destination Queue Reference

ulSrcId UINT32 Y Source Queue Reference

ulLen UINT32 4 Packet Data Length (in Bytes)

ulId UINT32 Any Packet Identification as Unique Number

ulSta UINT32 0x00000000 Status

ulCmd UINT32
0x00002F90

Command
Force LED Flashing

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 0x00000000 Routing Information

 DESTINATION: SYSTEM #define RCX_PACKET_DEST_SYSTEM 0x00000000

 COMMUNICATION CHANNEL 0 #define RCX_COMM_CHANNEL_0 0x00000000

 COMMUNICATION CHANNEL 1 #define RCX_COMM_CHANNEL_1 0x00000001

 COMMUNICATION CHANNEL 2 #define RCX_COMM_CHANNEL_2 0x00000002

 COMMUNICATION CHANNEL 3 #define RCX_COMM_CHANNEL_3 0x00000003

 DESTINATION: CHANNEL #define RCX_PKT_COMM_CHANNEL_TOKEN 0x00000020

 FORCE LED FLASHING REQUEST
 #define RCX_FORCE_LED_FLASH_REQ 0x00002F90

netX DPM Interface Manual Diagnostic • 199

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Packet Structure Reference
typedef struct RCX_FORCE_LED_FLASH_REQ_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_FORCE_LED_FLASH_REQ_T;

5.4.3.2 Force LED Flashing Confirmation

The system channel returns the following packet.

Structure Information

Type: Confirmation

Area Variable Type Value / Range Description

tHead Structure Information

ulDest UINT32 From Request Destination Queue Handle

ulSrc UINT32 From Request Source Queue Handle

ulDestId UINT32 From Request Destination Queue Reference

ulSrcId UINT32 From Request Source Queue Reference

ulLen UINT32 0 Packet Data Length (in Bytes)

ulId UINT32 From Request Packet Identification as Unique Number

ulSta UINT32 See Below Status / Error Code, see Section 7

ulCmd UINT32
0x00002F91

Confirmation
Force LED Flashing

ulExt UINT32 0x00000000 Reserved

ulRout UINT32 Z Routing Information, Don't Care, Don't Use

 FORCE LED FLASHING CONFIRMATION

 #define RCX_FORCE_LED_FLASH_CNF RCX_FORCE_LED_FLASH_REQ+1

Packet Structure Reference
typedef struct RCX_FORCE_LED_FLASH_CNF_Ttag
{
 RCX_PACKET_HEADER_T tHead; /* packet header */
} RCX_FORCE_LED_FLASH_CNF_T;

Data Field

There is no data field returned in the Start Firmware confirmation packet.

netX DPM Interface Manual Configuration • 200

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

6 Configuration

6.1 SYCON.net
SYCON.net used the FDT / DTM model with its ActiveX interfaces (see below).

Configuration in terms of a network setup is carried out with SYCON.net. From the viewpoint of a
master device on a network, SYCON.net creates a list of slaves, to which the master shall open a
connection. This scan list contains information regarding network slaves as well as network
parameters such as baud rate and handshake mode between the netX DPM and the host system.
Slave devices are assigned a position (or offset address) within the output data block and input data
block of the dual-port memory, if the slave has output and input data. A slave device occupies a
certain amount of memory in the master's output and input data area.

SYCON.net creates a proprietary file, which contains configuration information. This file then is
downloaded to the netX chip and evaluated by the firmware. Refer to page 124 of how to download a
configuration file.

Offset addresses are usually assigned during the configuration process. Configuration in terms of a
network setup is carried out with a configuration tool.

6.2 FDT / DTM Concept
FDT stands for Field Device Type. The FDT standard was introduced by the FDT Joint Interest Group
(www.fdt-jig.org). FDT defines interfaces between so-called the Device Type Manager (or DTM) and
the engineering tool of the control system manufacturer. The FDT concept focuses on engineering,
commissioning, diagnostic and documentation of the fieldbus portion of the control systems. FDT
specifies interfaces in ActiveX technology.

A DTM is executed in the context of a FDT container. It uses ActiveX interfaces as defined by the FDT
specification. Device manufacturers supply DTMs as a means to configure their devices. The DTM
contains manufacturer specific configuration dialogs and generates all settings and parameters to
setup the devices. It can read and write parameter from/to the device and it provides customized
diagnostic functions. The DTM is independent from the engineering tool. A DTM is installed as a
component within the FDT framework.

A good example for the FDT / DTM model is a printer driver. An operating system does not need to
know all details of a certain printer; a driver provides a set of standardized function to the operating
system to control all functions of this printer. The FDT / DTM concept functions similar: The DTM
provides a set of function to the control system and "translates" commands into a language a fieldbus
device understands.

The engineering tool and the DTM exchange data by the means of XML files (XML = Extensible
Markup Language). The XML file contains information necessary for the engineering tool of the control
system to understand the network layout in terms of offset addresses of configured network slaves
and their data length in the dual-port memory.

http://www.fdt-jig.org/

netX DPM Interface Manual Configuration • 201

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

6.3 Online Data Manager ODM
The ODM provides a standardized access to Hilscher communication interface cards. It is based on
COM technology (Component Object Model).

Functional Overview
 COM interface, serving multiple applications per device connection

 Support of an unlimited number of hardware devices

 Executable as system service or out-proc server

 Device addressing via human readable strings

 Support of RCS and rcX operating system and user defined data packets

 Device communication via a separate communication layer

 Access to the communication drivers via COM (in-proc server) using a pre-defined interface to
allow OEM driver development and implementation

 Automated loading of communication drivers via a defined COM category

 Driver configuration through client application (ActiveX)

 Supports asynchronous and I/O image data transfer

 Support of unsolicited messages for registered server applications

 Flexible trace mechanisms for debugging and monitoring operation

 Supported operating systems: Windows 2000/XP

Currently available ODM drivers
 cifX Device Driver, to communicate to netX based devices, running the rcX operating system, via

dual port memory

 CIF Device Driver, to communicate to Hilscher devices, running the RCS operating system, via
dual port memory

 3964R Serial Driver to communicate to Hilscher devices, running the RCS operating system, via
the serial diagnostics interface

 TCP/IP Driver to communicate to Hilscher devices, running the RCS operating system, offering a
Hilscher TCP/IP server

More details to the Online Data Manager can be found in a separate document.

netX DPM Interface Manual Configuration • 202

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

6.4 Other Configuration Tools

6.4.1 Configuration without SYCON.net

In this section the term Configuration is used to describe a method to transfer a set of parameter from
the host system to the protocol stack that allows the system to communicate on the network. For
example, configuration parameters include among other things baud rate, station name or address
and length of input and output data.

The master station opens and maintains connection to network slaves. For that reason the master
requires extensive slave parameter settings. Usually, a master stores one parameter set for each of
the slaves. So the master firmware has more sophisticated requirements in terms of configuration than
a slave firmware.

6.4.1.1 Slave Firmware

Most of the netX slave protocol stacks support configuration via packets. Details of the packet are
outlined in the corresponding documentation for the fieldbus firmware. The general mechanism is
described here.

A slave protocol stack can be commissioned without downloading a SYCON.net configuration
database. Without such a database, the slave stack expects to receive its configuration settings via
the mailbox. Therefore the application compiles a packet with appropriate configuration parameter and
sends it to the slave protocol stack. The slave stack stores these parameters into its RAM. Then the
slave expects the application to execute the Channel Initialization procedure (see page 118 for
details). Until the initialization procedure is not performed, the slave stack remains in a non-configured
mode (Offline mode).

After installation, the slave stack allows network connection to be opened automatically or application
request, depending on the setting for Automatic / Controlled Start of Communication (see page 86). If
the initialization procedure is not performed, the application may overwrite the last configuration
settings stored in RAM. The slave firmware will not use them until the initialization procedure is
performed.

NOTE During the initialization procedure the protocol stack shuts down all network connections
immediately regardless of their current state.

If the current configuration settings are locked (see page 89 for details), the slave will not accept the
initialization command. However, it will accept downloading configuration parameter.

NOTE After System Reset (see page 117) or power-on reset (POR) all configuration settings stored
in RAM are lost and need to be downloaded again.

6.4.1.2 Master Firmware

Details are to be determined.

6.5 Address Table
Details are to be determined.

netX DPM Interface Manual Status & Error Codes • 203

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

7 Status & Error Codes
The following status and error codes may be returned in ulSta of the packet header or shown in the
ulCommunicationError field in the common status block. Not every of the codes outlined below are
used by a specifc protocol stack.

Value Definition / Description
0x00000000 RCX_S_OK

Success, Status Okay
0xC0000001 RCX_E_FAIL

Fail
0xC0000002 RCX_E_UNEXPECTED

Unexpected
0xC0000003 RCX_E_OUTOFMEMORY

Out Of Memory
0xC0000004 RCX_E_UNKNOWN_COMMAND

Unknown Command
0xC0000005 RCX_E_UNKNOWN_DESTINATION

Unknown Destination
0xC0000006 RCX_E_UNKNOWN_DESTINATION_ID

Unknown Destination ID
0xC0000007 RCX_E_INVALID_PACKET_LEN

Invalid Packet Length
0xC0000008 RCX_E_INVALID_EXTENSION

Invalid Extension
0xC0000009 RCX_E_INVALID_PARAMETER

Invalid Parameter
0xC000000C RCX_E_WATCHDOG_TIMEOUT

Watchdog Timeout
0xC000000D RCX_E_INVALID_LIST_TYPE

Invalid List Type
0xC000000E RCX_E_UNKNOWN_HANDLE

Unknown Handle
0xC000000F RCX_E_PACKET_OUT_OF_SEQ

Out Of Sequence
0xC0000010 RCX_E_PACKET_OUT_OF_MEMORY

Out Of Memory
0xC0000011 RCX_E_QUE_PACKETDONE

Queue Packet Done
0xC0000012 RCX_E_QUE_SENDPACKET

Queue Send Packet
0xC0000013 RCX_E_POOL_PACKET_GET

Pool Packet Get
0xC0000015 RCX_E_POOL_GET_LOAD

Pool Get Load
0xC000001A RCX_E_REQUEST_RUNNING

Request Already Running
0xC0000100 RCX_E_INIT_FAULT

Initialization Fault
0xC0000101 RCX_E_DATABASE_ACCESS_FAILED

Database Access Failed

netX DPM Interface Manual Status & Error Codes • 204

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

0xC0000119 RCX_E_NOT_CONFIGURED
Not Configured

0xC0000120 RCX_E_CONFIGURATION_FAULT
Configuration Fault

0xC0000121 RCX_E_INCONSISTENT_DATA_SET
Inconsistent Data Set

0xC0000122 RCX_E_DATA_SET_MISMATCH
Data Set Mismatch

0xC0000123 RCX_E_INSUFFICIENT_LICENSE
Insufficient License

0xC0000124 RCX_E_PARAMETER_ERROR
Parameter Error

0xC0000125 RCX_E_INVALID_NETWORK_ADDRESS
Invalid Network Address

0xC0000126 RCX_E_NO_SECURITY_MEMORY
No Security Memory

0xC0000140 RCX_E_NETWORK_FAULT
Network Fault

0xC0000141 RCX_E_CONNECTION_CLOSED
Connection Closed

0xC0000142 RCX_E_CONNECTION_TIMEOUT
Connection Timeout

0xC0000143 RCX_E_LONELY_NETWORK
Lonely Network

0xC0000144 RCX_E_DUPLICATE_NODE
Duplicate Node

0xC0000145 RCX_E_CABLE_DISCONNECT
Cable Disconnected

0xC0000180 RCX_E_BUS_OFF
Network Node Bus Off

0xC0000181 RCX_E_CONFIG_LOCKED
Configuration Locked

0xC0000182 RCX_E_APPLICATION_NOT_READY
Application Not Ready

0xC002000C RCX_E_TIMER_APPL_PACKET_SENT
Timer App Packet Sent

0xC02B0001 RCX_E_QUE_UNKNOWN
Unknown Queue

0xC02B0002 RCX_E_QUE_INDEX_UNKNOWN
Unknown Queue Index

0xC02B0003 RCX_E_TASK_UNKNOWN
Unknown Task

0xC02B0004 RCX_E_TASK_INDEX_UNKNOWN
Unknown Task Index

0xC02B0005 RCX_E_TASK_HANDLE_INVALID
Invalid Task Handle

0xC02B0006 RCX_E_TASK_INFO_IDX_UNKNOWN
Unknown Index

0xC02B0007 RCX_E_FILE_XFR_TYPE_INVALID
Invalid Transfer Type

0xC02B0008 RCX_E_FILE_REQUEST_INCORRECT
Invalid File Request

0xC02B000E RCX_E_TASK_INVALID
Invalid Task

netX DPM Interface Manual Status & Error Codes • 205

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

0xC02B001D RCX_E_SEC_FAILED
Security EEPROM Access Failed

0xC02B001E RCX_E_EEPROM_DISABLED
EEPROM Disabled

0xC02B001F RCX_E_INVALID_EXT
Invalid Extension

0xC02B0020 RCX_E_SIZE_OUT_OF_RANGE
Block Size Out Of Range

0xC02B0021 RCX_E_INVALID_CHANNEL
Invalid Channel

0xC02B0022 RCX_E_INVALID_FILE_LEN
Invalid File Length

0xC02B0023 RCX_E_INVALID_CHAR_FOUND
Invalid Character Found

0xC02B0024 RCX_E_PACKET_OUT_OF_SEQ
Packet Out Of Sequence

0xC02B0025 RCX_E_SEC_NOT_ALLOWED
Not Allowed In Current State

0xC02B0026 RCX_E_SEC_INVALID_ZONE
Security EEPROM Invalid Zone

0xC02B0028 RCX_E_SEC_EEPROM_NOT_AVAIL
Security EEPROM Eeprom Not Available

0xC02B0029 RCX_E_SEC_INVALID_CHECKSUM
Security EEPROM Invalid Checksum

0xC02B002A RCX_E_SEC_ZONE_NOT_WRITEABLE
Security EEPROM Zone Not Writeable

0xC02B002B RCX_E_SEC_READ_FAILED
Security EEPROM Read Failed

0xC02B002C RCX_E_SEC_WRITE_FAILED
Security EEPROM Write Failed

0xC02B002D RCX_E_SEC_ACCESS_DENIED
Security EEPROM Access Denied

0xC02B002E RCX_E_SEC_EEPROM_EMULATED
Security EEPROM Emulated

0xC02B0038 RCX_E_INVALID_BLOCK
Invalid Block

0xC02B0039 RCX_E_INVALID_STRUCT_NUMBER
Invalid Structure Number

0xC02B4352 RCX_E_INVALID_CHECKSUM
Invalid Checksum

0xC02B4B54 RCX_E_CONFIG_LOCKED
Configuration Locked

0xC02B4D52 RCX_E_SEC_ZONE_NOT_READABLE
Security EEPROM Zone Not Readable

else Others are reserved

netX DPM Interface Manual Status & Error Codes • 206

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

System Error

The system error in the system status block field (see page 44) holds information about the general
status of the netX firmware stacks. An error code of zero indicates a faultless system. If the system
error field holds a value other than SUCCESS, the Error flag in the netX System flags is set (see page
41 for details).

Value Definition / Description
0x00000000 RCX_SYS_SUCCESS

Success
0x00000001 RCX_SYS_RAM_NOT_FOUND

RAM Not Found
0x00000002 RCX_SYS_RAM_TYPE

Invalid RAM Type
0x00000003 RCX_SYS_RAM_SIZE

Invalid RAM Size
0x00000004 RCX_SYS_RAM_TEST

Ram Test Failed
0x00000005 RCX_SYS_FLASH_NOT_FOUND

Flash Not Found
0x00000006 RCX_SYS_FLASH_TYPE

Invalid Flash Type
0x00000007 RCX_SYS_FLASH_SIZE

Invalid Flash Size
0x00000008 RCX_SYS_FLASH_TEST

Flash Test Failed
0x00000009 RCX_SYS_EEPROM_NOT_FOUND

EEPROM Not Found
0x0000000A RCX_SYS_EEPROM_TYPE

Invalid EEPROM Type
0x0000000B RCX_SYS_EEPROM_SIZE

Invalid EEPROM Size
0x0000000C RCX_SYS_EEPROM_TEST

EEPROM Test Failed
0x0000000D RCX_SYS_SECURE_EEPROM

Security EEPROM Failure
0x0000000E RCX_SYS_SECURE_EEPROM_NOT_INIT

Security EEPROM Not Initialized
0x0000000F RCX_SYS_FILE_SYSTEM_FAULT

File System Fault
0x00000010 RCX_SYS_VERSION_CONFLICT

Version Conflict
0x00000011 RCX_SYS_NOT_INITIALIZED

System Task Not Initialized
0x00000012 RCX_SYS_MEM_ALLOC

Memory Allocation Failed
else Others are reserved

netX DPM Interface Manual Appendix • 207

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

8 Appendix
A – Device Class

Device Description Value

Undefined Information about the device class is no available. 0x0000

Unclassifiable The device class is none of the defined ones. 0x0001

netX 500 The netX 500 chip is a highly integrated network controller with a
system architecture optimized towards communication and data
transfer for Real-Time Ethernet and fieldbus protocols.

0x0002

cifX A cifX card is a PCI network interface card for various fieldbus
protocols. It is based on netX 100 / 500 network controllers and
supports all Real-Time Ethernet system.

0x0003

comX A comX network interface module is used in embedded systems
to provide connectivity to the host system to various fieldbus
protocols. It is based on netX 100 / 500 network controllers and
supports all Real-Time Ethernet and fieldbus systems.

0x0004

netX Evaluation
Board

The System Development Board is base for custom hardware and
software designs around netX. The board is available with various
types of memory and interfaces, touch LCD, switches and LEDs
for digital inputs and outputs.

0x0005

netDIMM The netDIMM uses the network controller netX based on the
DIMM-PC format. It supports ffieldbus protocols like CANopen,
DeviceNet, PROFIBUS/MPI and has 2 Real-Time Ethernet ports
with Switch and Hub functionality to support EtherNet/IP,
EtherCAT, SERCOS III, Powerlink, PROFINET; a HMI version and
has on-board LCD and Touch controller.

0x0006

netX 100 The netX 100 chip is a highly integrated network controller with a
system architecture optimized towards communication and data
transfer for Real-Time Ethernet and fieldbus protocols.

0x0007

netHMI These types of boards are used as an evaluation platform for netX
terminal application under the Windows CE or Linux operating
systems. A color display, soft keys, LEDs, Ethernet and
PROFIBUS interfaces as well as a socket for Compact Flash
cards are available.

0x0008

netIO 50 The netIO 50 is an evaluation board with digital 32 bit input and 32
bit output data for all Ethernet based fieldbus system and uses the
netX 50 chip.

0x000A

netIO 100 The netIO 100 is an evaluation board with digital 16 bit input and
16 bit output data for all Ethernet based fieldbus system and uses
the netX 100 chip.

0x000B

netX 50 The netX 50 chip is a highly integrated network controller with a
system architecture optimized towards communication and data
transfer for Real-Time Ethernet and fieldbus protocols.

0x000C

netPAC TBD 0x000D

netTAP 100 The netTAP is a gateway system with two communication
interfaces. Depending on the specific type, the interfaces may be
serial, Ethernet or another fieldbus system.

0x000E

netSTICK The netSTICK devise allows evaluating network protocols and
application based on the netX 50 chip. It has an integrated debug
interface and comes with a development environment. It is
connected to the PC or notebook via its USB port.

0x000F

netX DPM Interface Manual Appendix • 208

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

netANALYZER The netANALYZER is a PCI card for jitter and delay measurement
in full duplex mode for Real-Time Ethernet protocols such as
EtherCAT, EtherNet/IP, Powerlink, PROFINET and SERCOS III.
The card is equipped with internal TAPs and features two bi-
directional Ethernet connections. To analyze the network traffic
the captured data then are transferred to Wireshark analysis
program using WinPcap-Format.

0x0010

netSWITCH TBD 0x0011

netLINK The netLINK is built into a D-Sub housing that has been designed
for accepting the PROFIBUS terminating resistors. It consists of a
complete Fieldbus Master together with a 10/100 MBit/s Ethernet-
Interface

0x0012

netIC The netIC is a ‘Single Chip Module’ in the dimensions of a DIL-32
IC. It is based on the netX 50 network controller and supports all
Real-Time Ethernet protocols.

0x0013

NPLC-C100 The netPLC-C100 is a PCI card and works as a "Slot-PLC" in a
standard desktop PC. It combines fieldbus and PLC functionality
in one chip. While a PLC runtime and a fieldbus protocol operate
autonomous on the card the PC is visualizing the process at the
same time. The card has a memory-card slot, an additional power
supply and a backup battery.

0x0014

NPLC-M100 The netPLC-M100 is a PLC CPU module and plugs on a carrier
board. It combines fieldbus and PLC functionality in one chip.
While a PLC runtime and a fieldbus protocol operate autonomous
on the card the carrier board is visualizing the process at the same
time. The card has a memory-card slot, an additional power
supply and a backup battery.

0x0015

netTAP 50 The netTAP 50 is a gateway system with two communication
interfaces. Depending on the type, the interfaces may be serial,
Ethernet or another fieldbus system.

0x0016

OEM Device Original Equipment Manufacturer (OEM) Device, no further
information available

0xFFFE

Reserved Reserved for further use. 0x0009, 0x000A
0x0017-0xFFFD
0xFFFF

Table 43 – Device Class

netX DPM Interface Manual Glossary • 209

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

9 Glossary
[Blanks are still to be determined]

Term Description
See also
Page(s):

Area
Block

Process data image or other data structures of a channel using
handshake mechanism to synchronize access to the dual-port
memory; holds status information and diagnostic data of both
network related issues and firmware or task related issues

Change of State
(COS) Mechanism

Method to synchronize or manage read/write access to shared
memory blocks between the netX firmware on one side and the
user application on the other

23 | 41 | 48
52 | 55

Channel Communication path from the dual-port memory through the netX
firmware communication interfaces of the netX chip (xC ports)
and back; it may also describe a protocol stack or an area in the
dual-port memory of the netX

15 | 19 | 27

Channel Mailbox

Area in the dual-port memory for a channel to use for non-cyclic
data exchange with other nodes on the network or to provide
access to the firmware running on the netX

24 | 18 | 60 |

Command
Acknowledge

Handshake mechanism to synchronize access to shared memory
blocks between the netX firmware and the user application; used
to ensure data consistency over data areas or block

22 | 41 | 72
48 | 78

Communication
Channel

Path from the dual-port memory through the netX firmware
communication interfaces of the netX chip (xC ports) and back;
it may also describe a protocol stack or an area in the dual-port
memory of the netX

15 | 18 | 20
47 | 92

Confirmation Mechanism used to transfer data via the mailboxes from/to the
netX chip: Request Indication | Response Confirmation

72

Data Status Additional information regarding the state of input and output
process data in the IO data image

84

Default Memory
Layout (DPM)

Small sized dual-port memory layout with is 16 KByte (one system
channel, one handshake channel & one communication channel)

18 | 27

DPM
Dual-Port Memory

Shared memory between the netX firmware an the host
application; data can be read and written unsynchronized or
synchronized (Handshake, Command / Acknowledge); is
divided into channels; each channel divides its area into blocks
with specific meaning

14 | 17 | 18
27 | 92

Enable Flag
Mechanism

The enable flags are used to selectively set flags without
interfering with other flags (or commands, respectively) in the
same register. The application has to enable these commands
before signaling the change to the netX protocol stack.

23 | 52 | 54

FDT/DTM Field Device Tool / Data Type Manager; Hilscher network
configuration tool (SYCON.net) utilizes FDT/DTM

200

File Upload
File Download

Set of packets to used transfer files from the host system to the
netX file system or from the netX file system to the host system

125 | 135

Firmware Loadable and executable protocol stack providing networking
access for fieldbus system through the netX chip

15

Handshake
Handshake Flags
Handshake Block

The handshake mechanism is used to synchronize data exchange
between two different processes, for example the netX dual-port
memory and the host application. Following the rules of
synchronization ensures consistency of data blocks while reading
or writing.

23 | 41 | 48 | 64

Host, Host System,
Host Application

Program that runs on the host controller, typically a PLC program
or other control program

15

netX DPM Interface Manual Glossary • 210

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

Indication Mechanism used to transfer data via the mailboxes from/to the
netX chip: Request Indication | Response Confirmation

72

Initialization
Channel Reset

Reset function that affects one communication channel only, as
apposed to the system-wide reset that affects the entire chip

117 | 117 | 118
120

Lock Configuration Function to protect the configuration settings against being
overwritten or otherwise changed

48 | 89

ODM Online Data Manager; high-level interface to a hardware driver;
used by the Hilscher configuration tool (SYCON.net); open to
third-party application

201

Packet
Packet Structure

Mailbox message structure used to transfer non-cyclic data
packets between the netX firmware and the host application via
the mailbox system (Channel Mailbox, System Mailbox);
consists of a 40 byte header and a variable size of payload

67

Process Data Image Cyclic input and output data exchanged with nodes on the
network;

25 | 17 | 78

Protocol Stack Usually a firmware is comprised of a system a handshake channel
and a netX communication channel. A communication channel is a
protocol stack like PROFINET or DeviceNet. A netX can have
different independently operating protocol stacks, which can be
executed concurrently in the context of the rcX operating system.

15 | 47

rcX Real time operating system for netX

Request Mechanism used to transfer data via the mailboxes from/to the
netX chip: Request Indication | Response Confirmation

72

Reset
System Reset

Reset function that affects the entire system including the
operating system (rcX) and all communication channels

117

Response Mechanism used to transfer data via the mailboxes from/to the
netX chip: Request Indication | Response Confirmation

72

Security Memory
Security EEPROM

Use to store certain hardware and product related information to
help identifying a netX hardware

99

SYCON.net FDT/DTM (see there) based network configuration tool; used for
creating a configuration database that is sent to the netX firmware;
database holds information about network settings like baud rate
and slaves that are assigned to a master firmware

200

SYS LED System LED 197

System Channel Communication path from the dual-port memory into the netX
operating system and back; provides information of the system
state and allows controlling certain functions, like (system) reset
(Reset)

15 | 19 | 27

System Mailbox Used for a non-cyclic data exchange or to provide access to the
firmware running on the netX (send and receive mailbox)

24 | 18 | 46 |

Watchdog
Host Watchdog
Device Watchdog

Allows the netX operating system supervising the host application
and vice versa; host system copies content from the host
watchdog cell; netX reads from host watchdog cell, increments
value and writes it into the device watchdog cell; if copying
exceeds the configure timeout period, the netX firmware shuts
down network communication

52 | 54 | 153

xC Port Serial communication interface to a fieldbus or network, integrated
processor on the netX chip

15 | 29

Table 44 - Glossary

netX DPM Interface Manual Contact • 211

Hilscher Gesellschaft für Systemautomation mbH – Rheinstr. 15 – D 65795 Hattersheim
Edition 8 – netX Dual-Port Memory Interface#EN – 2009/05

10 Contact
Headquarter

Germany
Hilscher Gesellschaft für
Systemautomation mbH
Rheinstrasse 15
65795 Hattersheim
Phone: +49 (0) 6190 9907-0
Fax: +49 (0) 6190 9907-50
E-Mail: info@hilscher.com
Support
Phone: +49 (0) 6190 9907-99
E-Mail: de.support@hilscher.com

Subsidiaries

China
Hilscher Ges.f.Systemaut. mbH
Shanghai Representative Office
200010 Shanghai
Phone: +86 (0) 21-6355-5161
E-Mail: info@hilscher.cn
Support
Phone: +86 (0) 21-6355-5161
E-Mail: cn.support@hilscher.com

France
Hilscher France S.a.r.l.
69500 Bron
Phone: +33 (0) 4 72 37 98 40
E-Mail: info@hilscher.fr
Support
Phone: +33 (0) 4 72 37 98 40
E-Mail: fr.support@hilscher.com

India
Hilscher India Pvt. Ltd.
New Delhi - 110 025
Phone: +91 9810269248
E-Mail: info@hilscher.in

Italy
Hilscher Italia srl
20090 Vimodrone (MI)
Phone: +39 02 25007068
E-Mail: info@hilscher.it
Support
Phone: +39/02 25007068
E-Mail: it.support@hilscher.com

Japan
Hilscher Japan KK
Tokyo, 160-0022
Phone: +81 (0) 3-5362-0521
E-Mail: info@hilscher.jp
Support
Phone: +81 (0) 3-5362-0521
E-Mail: jp.support@hilscher.com

Switzerland
Hilscher Swiss GmbH
4500 Solothurn
Phone: +41 (0) 32 623 6633
E-Mail: info@hilscher.ch
Support
Phone: +49 (0) 6190 9907-99
E-Mail: ch.support@hilscher.com

USA
Hilscher North America, Inc.
Lisle, IL 60532
Phone: +1 630-505-5301
E-Mail: info@hilscher.us
Support
Phone: +1 630-505-5301
E-Mail: us.support@hilscher.com

mailto:info@hilscher.com
mailto:de.support@hilscher.com
mailto:info@hilscher.cn
mailto:cn.support@hilscher.com
mailto:info@hilscher.fr
mailto:fr.support@hilscher.com
mailto:info@hilscher.in
mailto:info@hilscher.it
mailto:it.support@hilscher.com
mailto:info@hilscher.jp
mailto:jp.support@hilscher.com
mailto:info@hilscher.ch
mailto:ch.support@hilscher.com
mailto:info@hilscher.us
mailto:us.support@hilscher.com

	Introduction
	Terms, Abbreviations and Definitions
	Limitations

	Dual-Port Memory Structure
	Boot Procedure
	netX Firmware
	Dual-Port Memory Layout
	Default Dual-Port Memory Layout
	Dual-Port Memory Channels
	System Channel
	Communication Channels
	Handshake Channel
	Communication Channel
	Application Channels

	Data Transfer Mechanism
	Command and Acknowledge
	Handshake Registers and Flags
	Change of State Mechanism
	Enable Flag Mechanism
	Mailbox
	Input and Output Data Blocks
	Control Block
	Status Block

	Accessing a Protocol Stack

	Dual-Port Memory Definitions
	System Channel
	System Information Block
	Channel Information Block
	System Handshake Register
	netX System Flags
	Host System Flags

	System Handshake Block
	System Control Block
	System Status Block
	System Mailbox

	Communication Channel
	Default Memory Layout
	Channel Handshake Register
	netX Communication Flags
	Host Communication Flags

	Handshake Block
	Control Block
	Common Status Block
	All Implementations
	Master Implementation
	Slave Implementation

	Extended Status Block (Protocol Specific)
	Channel Mailbox
	High Priority Output / Input Data Image
	Reserved Area
	Process Data Output/Input Image

	Handshake Channel
	Application Channel

	Dual-Port Memory Function
	Non-Cyclic Data Exchange
	Messages or Packets
	About System and Channel Mailbox
	Using ulSrc and ulSrcId
	How to Route rcX Packets
	Client/Server Mechanism
	Application as Client
	Application as Server

	Transferring Fragmented Packets
	Extension and Identifier Field
	Procedure
	Abort Fragmented Packets Request
	Abort Fragmented Packet Confirmation

	Input / Output Data Image
	Process Data Transfer Synchronization
	Process Data Handshake Modes
	Not Buffered, Uncontrolled Mode
	Buffered, Controlled Mode

	Input/Output Data Status
	About Input/Output Data Status
	Provider State
	Input Data Status
	Output Data Status

	Consumer State

	Start / Stop Communication
	Controlled or Automatic Start
	Start / Stop Communication through Dual-Port Memory
	(Re-)Start Communication
	Stop Communication

	Start / Stop Communication through Packets
	Start / Stop Communication Request
	Start / Stop Communication Confirmation

	Lock Configuration
	Lock Configuration through Dual-Port Memory
	Lock Configuration through Packets
	Lock / Unlock Configuration Request
	Lock / Unlock Configuration Confirmation

	Determining DPM Layout
	Default Memory Layout
	Obtaining Logical Layout
	Channel Definition

	Mechanism
	Determining Memory Block Number
	Obtain Area or Block Information
	Get Block Information Request
	Get Block Information Confirmation

	Identifying netX Hardware
	Security Memory
	Security Memory Read Request
	Security Memory Read Confirmation
	Security Memory Write Request
	Security Memory Write Confirmation
	Security Memory Zones
	Checksum
	Dual-Port Memory Default Values

	Identifying netX Hardware through Packets
	Identify Hardware Request
	Identify Hardware Confirmation
	License Information Request
	License Information Confirmation
	Read Hardware Information Request
	Read Hardware Information Confirmation

	Identifying Channel Firmware
	Identifying Channel Firmware Request
	Identifying Channel Firmware Confirmation

	Reset Command
	System Reset vs. Channel Initialization
	Resetting netX through Dual-Port Memory
	System Reset
	Channel Initialization
	Boot Start

	System Reset through Packets
	Reset Request
	Reset Confirmation
	Channel Initialization Request
	Channel Initialization Confirmation

	Downloading Files to netX
	File Download
	File Download Request
	File Download Confirmation

	File Data Download
	File Data Download Request
	File Data Download Confirmation

	Abort File Download
	Abort File Download Request
	Abort File Download Confirmation

	Uploading Files from netX
	File Upload
	File Upload Request
	File Upload Confirmation

	File Data Upload
	File Data Upload Request
	File Data Upload Confirmation

	File Upload Abort
	File Upload Abort Request
	File Upload Abort Confirmation

	Creating a CRC32 Checksum

	Read MD5 File Checksum
	MD5 File Checksum Request
	MD5 File Checksum Confirmation

	Delete a File
	File Delete Request
	File Delete Confirmation

	List Directories and Files from File System
	Directory List Request
	Directory List Confirmation

	Host / Device Watchdog
	Function
	Get Watchdog Time Request
	Get Watchdog Time Confirmation
	Set Watchdog Time Request
	Set Watchdog Time Confirmation

	Set MAC Address
	Set MAC Address Request
	Set MAC Address Confirmation

	Start Firmware on netX
	Start Firmware Request
	Start Firmware Confirmation

	Register / Unregister an Application
	Register Application Request
	Register Application Confirmation
	Unregister Application Request
	Unregister Application Confirmation

	Delete Configuration from the System
	Delete Configuration Request
	Delete Configuration Confirmation

	System Channel Information Blocks
	Read System Information Block
	Read System Information Block Request
	Read System Information Block Confirmation

	Read Channel Information Block
	Read Channel Information Block Request
	Read Channel Information Block Confirmation

	Read System Control Block
	Read System Control Block Request
	Read System Control Block Confirmation

	Read System Status Block
	Read System Status Block Request
	Read System Status Block Confirmation

	Communication Channel Information Blocks
	Read Communication Control Block
	Read Communication Control Block Request
	Read Communication Control Block Confirmation

	Read Common Status Block
	Read Common Status Block Request
	Read Common Status Block Confirmation

	Read Extended Status Block
	Read Extended Status Block Request
	Read Extended Status Block Confirmation

	Read Performance Data through Packets
	Read Performance Data Request
	Read Performance Data Confirmation

	Diagnostic
	Versioning
	Network Connection State
	Mechanism
	Obtain List of Slave Handles
	Get Slave Handle Request
	Get Slave Handle Confirmation

	Obtain Slave Connection Information
	Get Slave Connection Information Request
	Get Slave Connection Information Confirmation

	Obtain I/O Data Size Information
	Get DPM I/O Information Request
	Get DPM I/O Information Confirmation

	LEDs
	System LED
	Communication Channel LEDs
	Force LED Flashing
	Force LED Flashing Request
	Force LED Flashing Confirmation

	Configuration
	SYCON.net
	FDT / DTM Concept
	Online Data Manager ODM
	Other Configuration Tools
	Configuration without SYCON.net
	Slave Firmware
	Master Firmware

	Address Table

	Status & Error Codes
	Appendix
	Glossary
	Contact

