

# Программируем контроллер модульной линейки FASTWEL I/O CPM713

Светлана Захаркина, Анастасия Казначеева, Александр Локотков

В статье приводятся ответы на часто задаваемые вопросы пользователей системы FASTWEL I/O CPM713. Описываются готовые решения в области подключения, диагностики и программирования контроллера.

## Вопрос

Как оценить уровень загрузки процессора СРМ713?

ВОПРОСЫ-ОТВЕТЫ

## Ответ

Оценить уровень загрузки процессора **СРМ713** можно следующими способами.

Способ 1: визуально оценить степень свечения верхних светодиодов RUN/ ERR и APP на панели индикаторов (рис. 1). Если светодиод RUN/ERR светится красным цветом, то в приложении имеется более одной циклической задачи и ни одна из них не укладывается в заданный период. Если индикатор светится зелёным цветом, то в приложении имеется единственная циклическая задача и она хотя бы иногда успевает укладываться в заданный период, либо в приложении имеется более одной циклической задачи и хотя бы одна из них хотя бы иногда укладывается в заданный период. Прерывистое свечение красным цветом индикатора APP означает, что все циклические задачи никогда не успевают укладываться в заданный период и хотя бы одна циклическая задача иногда успевает укладываться в заданный период. Зелёный цвет индикатора APP означает, что все циклические задачи всегда успевают укладываться в заданный период.

Способ 2: программным путём проверить статус битовых полей диагностики исполнения приложения и счётчики циклов и запаздываний (рис. 2).

В конфигурации контроллера имеется секция *Diagnostics—Application*, в которой определены два входных канала, позволяющих приложению во время выполнения получить общее количество циклов всех циклических задач и общее количество циклов, во время которых циклические задачи не успели завершить исполнение в течение заданных периодов. Назначение каналов представлено в табл. 1.

Способ 3: воспользоваться функцией  $F\_lecTasks\_getInfo$  из библиотеки FastwelTasksExchange.lib. Данная функция принимает указатель на переменную типа  $F\_TASK\_INFO$  в качестве первого параметра и возвращает диагностическую информацию о задаче, номер которой передан вторым параметром. Если задача с данным номером отсутствует в системе, функция возвращает 0.

Структура *F\_TASK\_INFO* определена следующим образом: <u>TYPE F\_TASK\_INF0</u> :

STRUCT

## period\_us : DWORD;

(\* период циклической задачи в мкс или для ациклической задачи — 16#FFFFFFF \*)



Рис. 1. Панель индикаторов



Рис. 2. Диагностические каналы среды исполнения CODESYS

Таблица 1

## Описание секции Diagnostics-Application конфигурации контроллера узла

| Элемент/канал                | Адрес | Тип   | Назначение                                                                                                                       |
|------------------------------|-------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| CyclesCounter                | %IB1  | DWORD | Общее количество циклов всех циклических задач                                                                                   |
| OverrunsCounter              | %IB5  | DWORD | Общее количество циклов циклических задач, во время которых они не успели завершить выполнение в течение своих заданных периодов |
| Cyclic Tasks Status-Task1_16 | %IB9  | DWORD | Двухбитовые статусы циклических задач                                                                                            |



Рис. 3. Пример использования функции F\_IecTasks\_getInfo

| 🍤 PLC | C_PRG (PRG-ST)                     |
|-------|------------------------------------|
| 0003  | ⊟Task_info                         |
| 0004  | period_us = 80000                  |
| 0005  | .cyclesCount = 695                 |
| 0006  | .overrunsCount = 0                 |
| 0007  | .minExecutionTime_us = 40          |
| 8000  | .maxExecutionTime_us = 74          |
| 0009  | .name = 'NewTask'                  |
| 0010  | startCycleTickCount_us = 907070686 |
| 0011  | .lastExecutionTime_us = 45         |
| 0012  |                                    |

Рис. 4. Результат выполнения программного кода

## cyclesCount : DWORD;

(\* количество циклов, выполненных задачей \*)

#### overrunsCount : DWORD;

(\* количество запаздываний

циклической задачи \*)

# minExecutionTime\_us : DWORD;

(\* минимальное время ввода данных и выполнения пользовательского кода, мкс \*)

#### maxExecutionTime\_us : DWORD;

(\* максимальное время ввода данных и выполнения пользовательского кода, мкс \*)

name : STRING(23);

(\* имя задачи \*)

## startCycleTickCount\_us : DWORD;

(\* счётчик микросекунд в момент последнего запуска задачи перед вызовом F\_IecTasks\_getInfo \*) lastExecutionTime\_us : DWORD;

(\* время ввода данных и выполнения пользовательского кода в мкс в цикле, предшествующем вызову F lecTasks getInfo \*)

END\_STRUCT END\_TYPE

Номер задачи, передаваемый в качестве второго параметра, является индексом задачи (начиная с 0) в древовидном списке ресурса *Task Configuration* среды разработки CODESYS.

При вызове *F\_lecTasks\_getInfo* в контексте какой-либо циклической задачи в качестве номера может использоваться значение 16#FFFF. В этом случае функция вернёт статистику для текущей циклической задачи. Пример программы с использованием функции *F\_lecTasks\_getInfo* приведён на рис. 3 и 4.

Для рассмотренной в примере задачи: period us = 80000 — периол выполнения, мкс; cyclesCount = 695 — количество циклов, выполненных задачей; overrunsCount = 0 — количество циклов, на которых задача не уложилась в заданный период исполнения; minExecutionTime\_us = 40 -минимальное время исполнения, мкс; maxExecutionTime\_us = 74 -максимальное время исполнения, мкс; name = 'NewTask' – имя задачи; startCycleTickCount\_us = 907070686 -счётчик микросекунд в момент последнего запуска задачи перед вызовом *F* IecTasks getInfo; lastExecutionTime\_us = 45 — время ввода данных и выполнения пользовательского кода в мкс в цикле, предшествующем вызову

F\_IecTasks\_getInfo.

# Вопрос

Как установить связь с контроллером СРМ713 в среде программирования CODESYS V2.3?

## Ответ

Если контроллер новый, только что распакован, то соединиться с ним можно по адресу 10.0.0.1 (маска 255.0.0.0). Также с контроллером можно соединиться по интерфейсу «точка—точка» (P2P) через СОМ-порт с помощью кабеля, входящего в комплект поставки.

В случае если контроллер СРМ713 уже использовался ранее, но по какимто причинам нет информации о его коммуникационных параметрах и отсутствует рабочий проект, загруженный ранее, то для установки связи с контроллером необходимо выполнить следующую последовательность действий. 1. Перевести контроллер в безопасный режим:

- 1.1. Перевести первый переключатель в положение ON (вправо).
- 1.2. Выключить, а затем включить питание контроллера.
- 1.3. Дождаться загрузки контроллера (попеременное свечение индикатора RUN/ERR зелёным и красным цветом).
- 1.4. Вернуть первый переключатель в положение OFF (влево), чтобы при следующей перезагрузке питания контроллер не ушёл в безопасный режим.
- 1.5. Проверить подключение к контроллеру: IP 10.0.0.1, маска подсети 255.0.0.0.

Если рабочий проект существует, то дополнительно к п. 1 необходимо сделать следующее.

- 2. Загрузить рабочий проект в контроллер:
  - 2.1. Открыть проект в среде программирования CODESYS V2.3.
  - 2.2. На вкладке Ресурсы (Resources) в окне Конфигурация ПЛК (PLC Configuration) в поле Ethernet Multiprotocol Port установить допустимые в используемом сегменте сети параметры со значе-



Рис. 5. Окно сетевых параметров

ниями IP-адреса, маски подсети и адреса шлюза (рис. 5).

- 2.3. Открыть окно Параметры подключения (Communication Parameters) из меню Онлайн (Online). Добавить новое соединение (New) и выбрать пункт Modbus TCP (Fastwel Modbus TCP). По умолчанию в строке Address указывается заводской адрес контроллера 10.0.0.1.
- 2.4. Загрузить проект в контроллер командой Онлайн (Online)/Подключение (Login).
- 2.5. После загрузки проекта связь среды с контроллером оборвётся, потому что IP-адрес контроллера изменится на новый.

2.6. Чтобы подключиться ещё раз, необходимо в окне Параметры коммуникации в строке Address изменить адрес контроллера с 10.0.0.1 на нужный.

# Вопрос

Можно ли программным способом установить и прочитать пользовательский серийный номер контроллера СРМ713 или его МАС-адрес с целью привязать программу к данному контроллеру?

# Ответ

Установить, а затем прочитать пользовательский серийный номер контроллера СРМ713 можно с помощью функций FwPlatformSetSerialNumber и FwPlatformGetSerialNumber системной библиотеки FastwelPlatformControl.lib. Пример использования этих функций показан на рис. 6 и 7. Установить и прочитать MAC-адрес контроллера невозможно.

# Вопрос

Существуют ли у контроллеров СРМ713 какие-либо ограничения на запись значений через указатель POINTER в переменные Modbus?

В пояснение вопроса рассмотрим пример кода:

pt\_write[1]:=ADR(Out\_m\_Data01); pt\_write[1]^:=Data\_out[1]; pt\_write[2]:= pt\_write[1]+2; pt\_write[2]^:= Data\_out[2];

| CoDeSys - Установка             | _Чтение серииного номера.pro - [PLC_PRG (PRG-ST)]                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 🎭 <u>Ф</u> айл <u>П</u> равка П | <u>роект Вставить Дополнения Онлайн Окно С</u> правка                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| POU<br>I PLC_PRG (PRG)          | 0001    PROGRAM PLC_PRG      0002    VAR      0003    (*Переменная для записи результата вызова функций библиотеки FastwelPlatformControl.lib*)      0004    plResult:F_PLCTL_RESULT;      0005    (*Shaчeние серийного номера контроллера*)      0006    plSerialNumber:DWORD;      0008    ErrorCount:DWORD;=0;      0009    END_VAR      0010    0011      VAR CONSTANT    0012      0013    msg_debug:STRING:='Debug Info';      0014    END_VAR |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                 | 0001 (*Установка серийного номера*)      0002 plResult:=FwPlatformSetSerialNumber(1823);      0003 (*Проверяем результат операции*)      0004 IF plResult<>F_PLCTL_OK THEN      0005 ErrorCount:=ErrorCount+1;      0006 END_IF      0007 (*Чтение серийного номера*)      0008 plResult:=FwPlatformGetSerialNumber(ADR(plSerialNumber));      0009 IF plResult<>F_PLCTL_OK THEN      0010 ErrorCount:=ErrorCount+1;      0011 FnlResult      0012   |

# Рис. 6. Пример использования функций библиотеки FastwelPlatformControl.lib

| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                |                                             |
|-----------------------------------------|----------------------------------------------------------------|---------------------------------------------|
|                                         | 0001 plResult = F_PLCTL_OK                                     |                                             |
|                                         | 0002 plSerialNumber = 1823                                     |                                             |
| ······≣] PLC_PRG (PRG)                  | 0003 ErrorCount = 0                                            |                                             |
|                                         | 0004 SERIAL_NUMBER = 1823                                      |                                             |
|                                         | 0005 msg_debug = 'Debug Info'                                  |                                             |
|                                         | 0006                                                           |                                             |
|                                         | 0007                                                           |                                             |
|                                         | 8000                                                           |                                             |
|                                         | 0001 (*Установка серийного номера*)                            |                                             |
|                                         | 0002 plResult:=FwPlatformSetSerialNumber(1823);                | plResult = F PLCTL OK                       |
|                                         | 0003 (*Проверяем результат операции*)                          |                                             |
|                                         | 0004 IF plResult<>F_PLCTL_OK THEN                              | plResult = F_PLCTL_OK                       |
|                                         | 0005 ErrorCount:=ErrorCount+1;                                 | ErrorCount = 0                              |
|                                         | 0006 END_IF                                                    |                                             |
|                                         | 0007 (*Чтение серийного номера*)                               |                                             |
|                                         | 0008 plResult:=FwPlatformGetSerialNumber(ADR(plSerialNumber)); | plResult = F_PLCTL_OK plSerialNumber = 1823 |
|                                         | 0009 IF plResult<>F_PLCTL_OK THEN                              | plResult = F_PLCTL_OK                       |
|                                         | 0010 ErrorCount:=ErrorCount+1;                                 | ErrorCount = 0                              |
|                                         | 0011 END_IF                                                    |                                             |

Рис. 7. Результат выполнения программного кода

```
 Ethernet Multiprotocol Port[FIX]

 -Modbus TCP Slave[FIX]
       AT %IB2577: DWORD; (* TransactionsCount *) [CHANNEL (I)] = 50779
       ---- AT %IB2581: DWORD; (* ErrorsCount *) [CHANNEL (I)] = 5
       ....Inputs[FIX]
     ....Outputs [FIX]
         .....WORD Output [VAR]
              Out_m_Data01 AT %QB2561: WORD; (* *) [CHANNEL (Q)] = 42
          WORD Output [VAR]
              Out_m_Data02 AT %QB2563: WORD; (*
                                                     *)
                                                        [CHANNEL (Q)] = 24
          ⊡……WORD Output[VAR]
              ......Out m Data03 AT %QB2565: WORD; (* *) [CHANNEL (Q)] = 0
    -Modbus TCP Master[FIX]
DNP3 Protocol[FIX]
```

## Рис. 8. Окно «Конфигурация ПЛК»

| Имя     | Тип            | Адрес (1 65536) | Обработка | Значение | Описание |
|---------|----------------|-----------------|-----------|----------|----------|
| - Out1  | Input Register | 1               |           | 42       |          |
| _= Out2 | Input Register | 2               |           | 0        |          |
|         |                |                 |           |          |          |

Рис. 9. Окно «Конфигурация ОРС-сервера»

*Out\_m\_Data01* – выходная переменная Modbus.

Считаем её адрес. Затем к этому адресу прибавляем 2 (2 байта) и получаем адрес второй выходной переменной *Modbus*.

В самой среде CODESYS показано, что значения предаются на выход (рис. 8):

Но в OPC-сервере передаётся значение только для первой переменной (рис. 9): В чём может быть проблема?

Например, задача состоит в том, что существует некий внутренний массив данных *Data\_internal[i]*, и пользователь хочет из этого массива передавать данные на выходные переменные *Modbus*.

Если там большое количество переменных Modbus, то вручную это не очень удобно делать.

# Ответ

Использование этого приема: pt\_write[1]:=ADR(Out\_m\_DataO1); (\* и т.д. \*)

без специальных мер приводит к тому, что среда разработки CODESYS сгенерирует единственную ссылку на выходную часть образа процесса, соответствующую *Out\_m\_Data01*, а остальная область *Input Registers* не будет обновляться из приложения.

В результате изменения по Modbus будут видны только для первого регистра.

«Специальные меры» состоят в том, чтобы явно сослаться на желаемую область адресов в образе процесса. Скажем, если есть такое объявление: VAR CONSTANT ARRAY\_SZ : INT := 3; END\_VAR VAR Area:ARRAY[1..ARRAY\_SZ] OF WORD:=5,6,7; MbSlaveArea AT %QB2561 : ARRAY [1..ARRAY\_SZ] OF WORD; p\_mb : POINTER TO WORD;

## idx : INT;

# END\_VAR,

то в теле программы достаточно написать:

## MbSlaveArea;

a затем работать с указателями по следующему примеру: p\_mb := ADR(MbSlaveArea[1]);

FOR idx := 1 TO ARRAY\_SZ DO

# p\_mb^ := Area[idx]; p\_mb := p\_mb + SIZEOF(p\_mb^);

# END\_FOR

Результат выполнения программного кода представлен на рис.10.

На рис. 11 показано окно программы "Fastwel Modbus OPC Server", где отображаются значения трёх переменных.



Рис. 10. Результат выполнения программного кода

| 🛅 Uni | titled - Fastw | el Modbus OPC Se | erver |         |                |                 |           |          |          | X |
|-------|----------------|------------------|-------|---------|----------------|-----------------|-----------|----------|----------|---|
| Файл  | Добавить       | Редактировать    | Вид   | Справка |                |                 |           |          |          |   |
|       | 3              | e C              |       |         |                |                 |           |          |          |   |
| ····  | Node1          |                  |       | Имя     | Тип            | Адрес (1 65536) | Обработка | Значение | Описание |   |
|       |                |                  |       | - Out1  | Input Register | 1               |           | 5        |          |   |
|       |                |                  | -     | Out2    | Input Register | 2               |           | 6        |          |   |
|       |                |                  | - I-  | - Out3  | Input Register | 3               |           | 7        |          |   |





| - |                                  | - |
|---|----------------------------------|---|
|   |                                  |   |
|   | Считать грассировку              |   |
|   |                                  |   |
|   | Остановить трассировку           |   |
|   | Настройка трассировки            |   |
|   | Внешняя конфигурация трассировки |   |
|   | Запись значений трассировки      |   |
|   | Режим курсора                    |   |
| 1 | Многоканальный вид               |   |
| 1 | Отображать сетку                 |   |
|   | Масштаб по Ү                     |   |
|   | Растятуть                        |   |
|   | Сжать                            |   |

Рис. 13. Контекстно-зависимое меню в окне цифровой трассировки

# Рис. 12. Окно цифровой трассировки



Рис. 14. Окно «Масштаб по оси У»







# Вопрос

При разработке модели «Синусоида» выводятся графики в окне цифровой трассировки (рис. 12). В режиме с отключённым многоканальным видом не получается задать фиксированный диапазон по оси Ү. Как можно этого добиться? Работа ведётся в эмуляторе.

## Ответ

Для задания фиксированного диапазона необходимо:

- В процессе трассировки щёлкнуть правой кнопкой над областью трассировки и выбрать Масштаб по Y (рис. 13).
- 2. В диалоговой панели Масштаб по оси Y снять флажок Автоматически (рис. 14). Затем ввести номер трассы в поле Канал, требуемые минимальное и максимальное значения в соответствующие поля и нажать ОК. Область отображения трассы для

соответствующего канала будет визуализирована в заданных пределах (рис. 15).

Более подробная информация приведена в справочной системе и документации на CODESYS 2.3 (рис. 16).

Авторы – сотрудники компании ДОЛОМАНТ и фирмы ПРОСОФТ Телефон: (495) 234-0636 E-mail: info@prosoft.ru