

VIPA FM355 / R355 4/8-Channel Controller Module for Siemens S7-300 and VIPA System 300V

3-349-327-03 4/3.06

- Compatible with Siemens S7-300 and VIPA System 300V
- Software tool for complete configuration and parameter settings, import and export to and from S7 projects in the SIMATIC manager
- Online visualization of cyclically occurring data and configuration of process quantities via MPI (VIPA MP²I) interface, Ethernet TCP/IP, PROFIBUS-DP or PROFINET
- Sampling cycle 10 ms per channel
- 4/8 freely configurable control channels
- Binary inputs/outputs with short-circuit detection, freely assignable to controller states, functions and channels (depending upon variant)
- Non-assigned I/Os are freely available to the CPU
- PDPI control without overshooting
- Control parameters adaptation can be started at any time for each channel
- Control functions: limit transducer / 2-step, 3-step, continuous action
 and step-action controller
- · Fixed value, cascade, differential and switch control
- Hot runner control with actuating circuit and booster circuit
- · Assignment to groups for control zones for synchronous heating
- · Water cooling control (non-linear cooling effect with evaporation)
- · Data logger for all actual values and setpoints
- Alarm history with time stamp

- 4/8 sensor inputs, thermocouples, Pt100 or direct current and direct voltage can be selected individually with the software
- Thermocouple inputs immune to leakage current (up to 230 V)
- Removable cold junction, available as accessory equipment
- Suitable for zones with temperature rises of approximately 100 K/s to less than 100 K/h
- Mapping for checking sensor-actuator assignments
- Monitoring for sensor failure, reversed polarity and shortcircuiting
- Regulated temperature becomes active in the event of sensor failure
- Actual value correction for periodic measured-value fluctuation
- All zones can be deactivated as desired with internal or external signal or manual operation possible
- Setpoint ramps (up-down), proxy setpoint, setpoint limiting
- Feed-forward control for the avoidance of overshooting and undershooting during load reversal
- · Heating circuit monitoring without additional transformer
- Heating current monitoring with single/3-phase external current transformers and an optional voltage transformer for compensation of voltage fluctuation
- Numerous monitoring functions including, amongst others, channel and device-specific alarms, read-back outputs
- 2nd set of parameters
- Short-circuit detection at the binary outputs
- 24 V DC auxiliary power supply
- RS-232 service interface

Applications

Production processes are no longer perceived as individual sub-processes, but rather as integral constituents of an overall process. Thanks to integration of VIPA FM355 / R355 4 and 8-channel controller modules into the SIMATIC platform, users now have access to concentrated control technology know-how for the Siemens S7-300 compact modular automation system and the VIPA System 300V. Continuous communication amongst all automation components is assured by the backplane bus. The high performance 355Config configuration tool allows for full configuration and parameter settings (import and export to and from S7 projects in the SIMATIC manager). Productivity is thus increased for project implementation, and engineering and lifecycle costs are reduced as a result. Beyond this, expenses for initial start-up, maintenance and service are also reduced.

Applications include multi-channel temperature controllers for rubber and plastics processing machines (injection molding, extrusion, blow molding, hot-runner technology), semiconductor manufacturing processes, industrial and laboratory ovens, textile and packaging machines, climatic test cabinets, refrigerator and heater manufacturing, pharmaceuticals, chemicals, process engineering, food processing industry, wood and paper industries, glass and ceramics industry, temperature control devices and similar thermal processes. Furthermore, the module is used for facility automation applications.

The specially developed control algorithm for compensation of non-linear water evaporation characteristics allows for watercooled extruder zone applications.

GMC-I Gossen-Metrawatt GmbH

VIPA FM355 / R355 **4/8-Channel Controller Module**

Description

The autonomous VIPA FM355 / R355 temperature controllers can be very guickly configured, and can be adapted to control systems by means of self-tuning. Outstanding control performance is achieved by means of GOSSEN METRAWATT's own dead-beat PDPI algorithm. Thanks to a well thought-out range of variants, for example with or without actuator output, trouble-free use is also possible over considerable distances. In addition to the standardized functions, the following have been integrated as well: a data logger for all actual values and setpoints, an alarm history for error status entries with time stamp, and mapping (a test tool which checks for correct heater and sensor wiring). A booster circuit, synchronous heating via all controller modules, and heating current monitoring with only a single summation current transformer via up to 24 control channels have been included as well for use with hot-runner tools.

Applicable Regulations and Standards

IEC 61010-1 / EN 61010-1 / VDE 0411, part 1	Safety requirements for electrical equipment for measurement, control and laboratory use
IEC 60529 / EN 60529 DIN VDE 0470 part 1	Protection provided by enclosures for electrical equipment (IP code)
DIN EN 60204-1 / VDE 0113, Part 1	Machine safety
DIN EN 61326 VDE 0843, part 20	Electrical equipment for measurement, control and laboratory use – EMC requirements
IEC 60584 / EN 60584 (DIN 43710)	Thermocouples
IEC 60751 / DIN EN 60751	Industrial platinum resistance thermometers and platinum resistance elements, Pt100 sensors

Connector Pin Assignments

4-Channel Controller

Depending upon variant:

- Measurement inputs: thermocouple/Pt100 or direct voltage/current
- With or without actuator outputs (binary I/Os)

Front Plug Pin Assignments 4 ea. 10 V / 20 mA For connection of For connection of For connection of For connection of 1 L+ 21 24 V DC supply power L+ 21 24 V DC supply power 1 1 A heating current transformer 2 1k 2k 22 2 2k 22 1 A heating current transformer 1 A heating current transformer 1k 1 A heating current transformer 3 21 23 11 Phase 2 21 23 Phase 1 Phase 1 3 11 Phase 2 4 1 A heating current transformer Зk u 24 Heating voltage transformer 1 A heating current transformer 4 24 3k u Heating voltage transformer 5 25 Phase 3 31 ۷ (transformer, approx. 30 V) 5 31 25 Phase 3 (transformer, approx. 30 V) v 6 26 Temperature sensor + Temperature sensor U U 26 + + 0 ... 10 V 6 + 0 ... 10 V 2 – 7 27 Channel 1 _ 1 Channel 2 Controlled variable, channel 1 *) 7 ⊥1 2⊥ 27 Controlled variable, channel 2 *) 8 \bot \bot 28 *) +0/4 ... 20 mA 8 1 28 +0/4 ... 20 mA I Z355 reference junction 9 C1 + 29 Temperature Sensor U 29 9 + 0 ... 10 V 10 C2 30 Channel 4 4 -10 4 ⊥ 30 Controlled variable, channel 4*) 31 Temperature Sensor 11 + \bot + 0 ... 10 V 11 U 1 31 +0/4 ... 20 mA Channel 3 12 -3 101 32 Digital input / output 1 **) 12 ⊥3 101 32 Digital input / output 1 **) Controlled variable, channel 3 *) 13 102 33 Digital input / output 2 **) T 102 33 +0/4 ... 20 mA 13 L Digital input / output 2 **) 14 A01 103 34 Analog output 1 (+10V/+20mA) Digital input / output 3 **) A01 103 34 Analog output 1 (+10 V/+20 mA) 14 Digital input / output 3 **) 15 A02 104 35 Analog output 2 (+10V/+20mA) Digital input / output 4 **) Analog output 2 (+10 V/+20 mA) 15 A02 104 35 Digital input / output 4 **) Digital input / output 5 **) 16 AGND 105 36 Analog output ground (M) AGND 105 36 Digital input / output 5 **) Analog output ground (M) 16 17 Rx 106 37 Digital input / output 6 **) RS 232 (pin 3) RS232 17 Rx 106 37 Digital input / output 6 **) (pin 3) (pin 2) 18 Тχ 107 38 Digital input / output 7 **) service service (pin 2) 18 Тχ 107 38 Digital input / output 7 **) interface (pin 5) 19 GND 108 39 Digital input / output 8 **) 19 GND 108 39 interface (pin 5) Digital input / output 8 **) 20 M 40 Power supply ground 20 M 40 Power supply ground

**) only for variant with binary I/Os

**) only in variant with binary I/Os

20mA

10V**∲**

1

Front Plug Pin Assigments, 4 Thermocouples / Pt100 Sensors

Pin Assignments, Left Front Plug, Al, 8 ea. U/I

8-Channel Controller

Depending upon variant:

- Measurement inputs: thermocouple/Pt100 or direct voltage/current
- With or without actuator outputs (binary I/Os)

Pin Assignments, Left Front Plug, Al, 8 ea. Thermocouple

For connection of For connection of 24 V DC supply power L+ 21 1 2 2k 22 1 A heating current transformer 1k 1A heating current transf. 3 11 21 23 Phase 1 Phase 2 1 A heating current transformer u 24 4 3k Heating voltage transformer 5 31 v 25 (transformer, approx. 30 V) Phase 3 6 26 U 27 + 0 ... 10 V 7 U + 0 ... 10 V Controlled variable, channel 1²⁾ 8 ⊥1 2⊥ 28 Controlled variable, channel 2²⁾ +0/4 ... 20 mA 9 1 1 29 +0/4 ... 20 mA 10 30 2) + 0 ... 10 V U 31 + 0 ... 10 V 11 U 4 1 32 Controlled variable, channel 3²⁾ Controlled variable, channel 4²⁾ 12 ⊥3 +0/4 ... 20 mA 13 Ш 33 +0/4 ... 20 mA 14 U U 34 + 0 ... 10 V + 0 ... 10 V Controlled variable, channel 5²⁾ Controlled variable, channel 6²⁾ 15 ⊥5 6⊥ 35 +0/4 ... 20 mA 16 I 1 36 +0/4 ... 20 mA U 37 + 0 ... 10 V 17 U + 0 ... 10 V Controlled variable, channel 7²⁾ 8 🔟 🛛 38 Controlled variable, channel 8²⁾ 18 ⊥7 1 39 +0/4 ... 20 mA 19 +0/4 ... 20 mA 20 M 40 Power supply ground

$\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array}$

 $^{3)}\,$ is also required for supplying analog outputs and service interface $^{4)}\,$ only in variant with binary I/Os

Pin Assignments, Right Front Plug, DIO, 24 ea. 24 V DC

For co	onnection of		_			For connection of
Supply power, 2	4V, 101724 ⁴⁾	1	1L+	2L+	21	Supply power, 24V, IO1 8 ⁴⁾
Digital input /	' output 17 4)	2	1017	101	22	Digital input / output 1 ⁴⁾
Digital input /	output 18 4)	3	1018	102	23	Digital input / output 2 ⁴⁾
Digital input /	' output 19 ⁴⁾	4	1019	103	24	Digital input / output 3 ⁴⁾
Digital input /	' output 20 4)	5	1020	104	25	Digital input / output 4 ⁴⁾
Digital input /	'output 21 ⁴⁾	6	1021	105	26	Digital input / output 5 ⁴⁾
Digital input /	' output 22 4)	7	1022	106	27	Digital input / output 6 ⁴⁾
Digital input /	' output 23 ⁴⁾	8	1023	107	28	Digital input / output 7 ⁴⁾
Digital input /	' output 24 4)	9	1024	108	29	Digital input / output 8 ⁴⁾
Power sup	ply ground ⁴⁾	10	1M	2M	30	Power supply ground 4)
			·			
		11		3L+	31	Supply power, 24 V, 109 16 ³⁾
Analog output 1 (-	+10 V/+20 mA)	12	A01	1009	32	Digital input / output 9 ⁴⁾
Analog output 2 (-	+10 V/+20 mA)	13	A02	1010	33	Digital input / output 10 ⁴⁾
Analog output 3 (-	+10 V/+20 mA)	14	A03	1011	34	Digital input / output 11 ⁴⁾
Analog output 4 (-	+10 V/+20 mA)	15	A04	1012	35	Digital input / output 12 ⁴⁾
Analog output	ground (3M)	16	AGND	1013	36	Digital input / output 13 ⁴⁾
RS232	(pin 3)	17	Rx	1014	37	Digital input / output 14 ⁴⁾
service	(pin 2)	18	Тх	1015	38	Digital input / output 15 ⁴⁾
interface	(pin 5)	19	GND	1016	39	Digital input / output 16 ⁴⁾
		20		ЗM	40	Power supply ground

Characteristic Values

Measurement Input: Direct Voltage, Direct Current

			Direct voltage	Direct current
		Measuring range	0 / 2 to 10 V, configurable	0 / 4 to 20 mA, configurable
Innute / Autoute		Continuous overload	100 V	60 mA DC
inputs / Outputs		Input impedance / load	approx. 84 k Ω	approx. 45 Ω
Sampling rate	10 ms per channel	Error message	when measuring quantity excee range by more than 10 %	ds or falls below measuring
Measurement input: ther	mocouple / 50 mV linear	Accuracy	< 0.7 % of measuring range	span
Thermocouples	Per IEC 60584 / EN 60584 / DIN 43710	Resolution	< 0.1 % of final value	
	type J, L, K, R, S, B and N			
Measuring range	Linear, 0 to 50 mV	Heating Current Monitori	ng Input	
Nominal input range for type	J, L 0 900° C	Measuring range	1 A AC (direct conne cially available measu	ction of a commer- uring transducer)
	K 0 1300° C	Resolution	< 0.1% of upper rang	ge value
	$R, S = 0 \dots 1750^{\circ} C$	Accuracy	typically < 5% of upp	er range limit
	N 0 1300° C	Reproducibility	< 1% of measured value +	- 0.5% of upper range limit
Accuracy / error	< 0.7% of measuring range span for types	Heating Voltage Monitori	ng Input	
	< 2.0% of measuring range span for types B and S, as of 600° C for type B	Measuring range	10 to 50 V AC (direct mercially available me	connection of a com- easuring transducer)
Resolution	0.1 K	Resolution	< 0.1% of upper rang	ge value
cont. overload AC:	50 / 60 Hz / 50 V AC, sinusoidal	Accuracy	typically < 5% of upp	er range limit
DC:	1 V DC	Reproducibility	< 1% of measured value +	- 0.5% of upper range limit
Input impedance	approx. 50 k Ω	Binary Inputs and Output	ts (depending upon varia	nt)
LITOI Message	temperature outside of measuring range	Output function	Active switching outp from auxiliary voltage	outs supplied directly
Reference Junction Meas	surement Input	Functions	Switching output (he	ating/cooling or
Nominal input range	0 to 70° C		more/less for step-ad alarm output	ction controllers)
Accuracy			non-assigned I/Os are	freely available to CPU
Reference junction	removable, available as accessory equip-	Read-out cycle	Adjustable within a ra	ange of 0.1 to 300 s
Pt100 Resistance Therm	ometer Measurement Input,	Nominal range of use	H signal: $U \ge auxiliar$ $I \le 100 \text{ mA}$	ry voltage –0.5 V N
2 or 3-Wire Connection			L signal: < 0.1 mA	to 0 commorbially
Pt100 Measuring range	per IEC 60751 / DIN EN 60751 60 to 280 Ω		available semiconduc	ctor relays (SSR) in
Nominal Input range	-100 to 600° C	Input function	Read back output st	atus
Sensor current	< 0.2 mA		external control of PL	_C etc.
Offset compensation	Possible by means of parameter entry		non-assigned I/Os are	freely available to CPU
Accuracy / error	< 0.7 % of measuring range	Nominal range of use	H signal: $> 14 V / 8$	16 mA at 24 V
Resolution	0.1 K		L signal: $< 7 V / < C$).2 mA
Cont. overload AC: DC:	50 / 60 Hz / 50 V AC, sinusoidal 1 V DC	Overload limit H and L signals	Continuous short-cire	cuit, interruption
Input impedance	approx. 18 k Ω	Continuous Outputs		
Cable resistance			Actuator output for p	roportional actuator
(both directions)	2-wire connection: 0 to 30 Ω, adjustable 3-wire connection: 0 to 30 Ω, compensated	Output quantity	0 (2) 10 V at > 1 kg 0 (4) 20 mA at < 3	$2 \log d$, $00 \Omega \log d$
Error message	For sensor breakage or short-circuit, or temperature outside of measuring range	Resolution Accuracy	0.1% of upper range	value
Sensor Input Configuration	on			

Sensor type is selected separately for each input.

Status indicators (depending upon variant)

Power on (L+) Run Controller active (loop) Error Binary I/Os active green green green red green

Control Performance

Setpoints

Setpoint limiting	Adjustable upper and lower setting limits
Setpoint 2	Activated via binary input or bus, adjustable value
Setpoint increase (boost)	Activated via binary input or bus, value and maximum duration can be configured
Ramp Function (separate for rise and fall)	Specification of gradual temperature change in degrees/min. Activated by means of: – Turn on auxiliary voltage – Change current setpoint value – Activate proxy setpoint – Switch from manual to automatic operation

Configurable Control Modes

Unused	No error monitoring		
Measure	With limit value menitoring		
Actuator	with innit value monitoring		
Limit transducer	Two / three-step controller without time response		
PDPI controller	Heating	Cooling	
	Can be combined as desired		
	Switching	Switching	
	Hot-runner	Water cooling	
	Continuous	Continuous	
	Step	Step	
	No heating	No cooling	
Proportional actuator	Two / three-step controller without time response		

In addition to fixed value control, the PDPI controller also includes differential, cascade and switching controller functions.

Control Channel Combinations

Differential contr.	The temperature difference is corrected.
Cascade contr.	The setpoint from one or more control channels is manipulated dynamically.
Switch contr.	Depending upon operating state, a control loop with only one actuator can be controlled at two different (temperature) measuring points.

Self-Tuning

Can be started at any time from any operating state. Control parameters can be changed.

Figure 1: Control Performance with Self-Optimization

Alarms

All errors and alarms for all channels, I/Os and functions can be accessed separately.

Selected errors and alarms can be read out to the binary outputs. Selection and assignment to a specific output can be configured as desired.

Channel-Specific Alarms

- Broken sensor, reversed polarity
- Two upper and two lower limit values, relative and absolute
- Heating current / heating circuit errors
- Adaptation errors

Device-Specific Alarms

- Hardware errors
- Overloading of the measurement inputs
- Reference junction errors
- I/O errors
- Mapping errors
- Parameter errors

Alarm History

The alarm history stores 100 error status entries with respective time stamps in a ring memory. Recording is started over each time the device is reset, and data are lost if auxiliary power fails.

Monitoring Functions

Limit Value Monitoring

Two upper and two lower limit values can be configured per channel.

Alarm memory and actuation suppression can be set up.

Heating Current Monitoring

Heating current monitoring	Permanently installed
Heating current	
acquisition	With external, commercially available current transformer. Measurement of summation current for all 8 channels. Measurement of summation current for up to 24 channels is possible with a transformer

Nominal value transfer Initiated automatically via the bus

Compensation of

current fluctuation By m	easuring heating voltage
Error Messages for	
 Antivalence 	Actuator signal OFF + heating current ON Actuator signal ON + heating current OFF
 Actual current value less than nominal value 	Dip below nominal heating current value by more than $5\% + 0.1$ A with actuator signal ON

Heating Circuit Monitoring

Without external transformer, without additional parametersConfigurableHeating circuit monitoring active / inactiveError Messages for100% heat without rising temperature, i.e.
for short-circuited thermocouple, inter-
rupted heating, no sensor in heating circuit

Hot Runner Control Functions

Actuating Circuit

Actuation with a reduced manipulating factor and dwelling at a specific actuation setpoint serves to dry out hygroscopic heating elements.

Group Actual Value Control – Synchronous Heating

Synchronous heat-up prevents thermal stress by minimizing actual value differences.

If self-tuning has been started, it takes actual value management into consideration, as well as the actuating circuit.

Synchronous heat-up via several controller modules is also possible.

Boosting – Temporarily Increased Setpoint

Temporarily increasing the setpoint frees clogged mould nozzles of "frozen" material remnants.

Mapping for Checking Sensor and Heater Assignments

This function is used to test for correct wiring of the heater and the sensors. Assignments can be checked when the machine is started up before initial heat-up. Testing is conducted in several phases in order to determine whether or not the temperature changes at the individual channels coincide with the actuating signals. If an error is detected, all actuating outputs remain inactive until the error has been acknowledged.

Data Logger

The data logger stores 3600 sampled value pairs including actual values and manipulated variables for all 4/8 channels in a ring memory.

Recording duration can be set between 6 minutes and 25 days. Recording is started over each time the device is reset, and data are lost if auxiliary power fails.

Service Interface

A laptop or a notebook can be connected to the RS 232 interface for service purposes, and for configuration.

Туре	Service Interface
Interface	RS 232
Maximum number of devices	1
Transmission Speed	19.2 kBaud
Protocol per	EN 60870

Supply power L+

A fully isolated safety power supply must be used to operate the device.

Nominal value24 V DCNominal range of use18 ... 30 V DCPower consumptionmaximum 10 Watt, typically 6 W (without
load)

Reference Conditions

Reference Quantity	Reference Condition
Auxiliary voltage	$24 \text{ V DC} \pm 1 \text{ V}$
Superimposed alternating voltage	Sinusoidal, or sinusoidal half-waves: 0.1 V AC
Allowable common-mode voltage	To electrically connected inputs: 0 V DC / AC
Ambient temperature	23° C ± 2 K
Reference junction temperature	23° C ± 2 K
Warm-up time	3 minutes
Measurement inputs	Thermocouple, low-resistance termination: \leq 10 Ω Pt100: 110 \pm 10 Ω

Influencing Quantities and Influence Error

Influencing Quantity	Nominal Range of Use	Maximum Influence Error
Ambient temperature – Thermocouple / Pt100 – Reference junction	0° C + 50° C 0° C + 50° C	± 0.05% MRS ¹⁾ / K 0.1 K / K
Cable resistance – Thermocouple – Pt100, 2-wire – Pt100, 3-wire	$ \begin{array}{l} RL = 0 \ & 200 \ \Omega \\ RL = 0 \ & 30 \ \Omega \\ RL = 0 \ & 30 \ \Omega \end{array} $	\pm 0.1% MRS ¹⁾ / 10 Ω Approx. 3 K / Ω (adjustable) \pm 2 K / 10 Ω
Warm-up influence	\leq 3 min	±1%

 $^{1)}$ MRS = measuring range span

Electrical Safety

Variant	IEC 61010-1 / EN 61010-1 / VDE 0411, part 1
Safety class	1
Overvoltage category	CAT I
Fouling factor	2
Protection	IEC 60529 / EN 60529 / VDE 0470, part 1
Housing	IP 20
Terminals	IP 20

Attention: The device is not equipped with its own mains switch.

Electromagnetic Compatibility

Interference Emission		IEC 61326/EN 61326				
Interference Immunity		IEC 61326/EN 61326				
Test type	Standard	Test severity		Criterion		
ESD	EN 61000-4-2	4 kV 8 kV	Contact discharge Atmospheric discharge	A A		
E field	EN 61000-4-3	10 V / m	80 1000 MHz	А		
Burst	EN 61000-4-4	2 kV	At all connector cables	А		
Surge	EN 61000-4-5	1 kV	Asymmetrical	А		
HF	EN 61000-4-6	3 V	0.15 80 MHz, all terminals	А		
NF	EN 61000-4-8	30 A/m	Magnetic field at system frequency	А		
	EN 61000-4-11		Voltage dip	А		

Ambient Conditions

Annual mean relative humidity, no condensation	5 to 95%
Ambient temperature – Nominal Range of Use – Operating range – Storage range	0° C + 60° C 0° C + 60° C - 25° C + 70° C

Mechanical Design

Basic housing dimensi Single width (W x H x I	ions: D) in mm: 40 x 125 x	: 120	
Double width (W x H x D) in mm: 80 x 125 x 120			
Weight	4-channel module: 8-channel module:	approx. 250 g approx. 500 g	
Type of connection	40-pin front plug		
Mounting	on S7-300 channel		

Dimensional Drawing (double width)

Order Information

4-Channel Temperature Control Module				
Article Number	Measurement Inputs	Binary I/Os		
VIPA FM355-3SD00 / R355A	Current / voltage	None		
VIPA FM355-3SD10 / R355B	Thermocouple / Pt100	None		
VIPA FM355-4SD00 / R355E	Current / voltage	8		
VIPA FM355-4SD10 / R355F	Thermocouple / Pt100	8		

8-Channel Temperature Control Module				
Article Number	Measurement Inputs	Binary I/Os		
VIPA FM355-3SF00 / R355C	Current / voltage	None		
VIPA FM355-3SF10 / R355D	Thermocouple / Pt100	None		
VIPA FM355-4SF00 / R355G	Current / voltage	24		
VIPA FM355-4SF10 / R355H	Thermocouple / Pt100	24		

Accessories

Description	Article Number
Removable cold junction for front plug with screw connection	Z355A
Removable cold junction for front plug with spring terminals	

Removable Cold Junctions

Visualization and Configuration

355Config Configuration Tool and data modules for S7-300

The 355Config software tool allows for complete configuration and parameter setting via the import and export function (WLD file) into a S7 project of the SIMATIC Manager. Data modules (Library) for communication via backplane bus are provided free of charge for Siemens and VIPA CPUs (also for Speed7).

Visualization

Online visualization of cyclically occurring values including, amongst others, actual values, control variables, heating current, alarms ..., as well as configuration of process quantities including, amongst others, setpoints, delay times, ramps ... and error diagnosis is possible via MPI (VIPA MP²I) interface, Ethernet TCP/IP, Profibus-DP or PROFINET.

Controller modules with parameter sets can be readily replaced if service is required:

- Storage of the parameter set in the CPU
- Comparison of the parameter set ID during start-up and parameter set updating

VIPA and System 300V are registered trade marks of VIPA Gesellschaft für Visualisierung und Prozessautomatisierung mbH. SIMATIC and STEP S7-300 are registered trade marks of Siemens AG.

Edited in Germany • Subject to change without notice • PDF version available on the Internet

VIPA, Gesellschaft für Visualisierung und Prozessautomatisierung mbH Ohmstrasse 4 91074 Herzogenaurach • Germany Phone +49-(0)-9132 744-0 Fax +49-(0)-9132 744-174 E-Mail info@vipa.de www.vipa.de

GMC-I Gossen-Metrawatt GmbH Thomas-Mann-Str. 16 - 20 90471 Nürnberg • Germany Phone: +49-(0)-911-8602-0 Fax: +49-(0)-911-8602-669 E-mail info@gossenmetrawatt.com www.gossenmetrawatt.com

