
PCL-832

3-axis servo motor
control card

C o p y r i g h t
This documentation and the software routines contained on the PCL-
832 software disk are copyrighted 1994 by Advantech Co., Ltd. All
rights are reserved. Advantech Co., Ltd. reserves the right to make
improvements in the products described in this manual at any time
without notice.

No part of this manual may be reproduced, copied, translated or
transmitted in any form or by any means without the prior written
permission of Advantech Co., Ltd. Information provided in this
manual is intended to be accurate and reliable. However, Advantech
Co., Ltd. assumes no responsibility for its use, nor for any infringe-
ments of the rights of third parties which may result from its use.

A c k n o w l e d g m e n t s
PC-LabCard is a trademark of Advantech Co., Ltd. IBM and PC are
trademarks of International Business Machines Corporation. MS-
DOS, Microsoft C and Quick Basic are trademarks of Microsoft
Corporation. BASIC is a trademark of Dartmouth College. Intel is a
trademark of Intel Corporation. Turbo C is a trademark of Borland
International.

Part No. 2005832000 1st Edition
Printed in Taiwan December 1994

C o n t e n t s
Chapter 1 General information 1

Introduction ... 2
Features .. 3
Applications ... 3
Specifications ... 4
General ... 4
Board layout .. 5

Chapter 2 Installation ... 7

Initial inspection.. 8
Switch and jumper settings .. 8

Base I/O address (SW1) ...8
Quadrature input multiplier (JP1, JP2, JP3)10
DDA time and Error counter overflow interrupt levels (JP4)10
I/O Wait state level (JP5) ...10

Connector pin assignments .. 11
Hardware installation ... 13

Chapter 3 Operation ... 1 5

PCL-832 Operating Principles .. 16
Digital Differential Analysis ..16
Closed-loop position control ..17

Chapter 3 Operation (ctd.)

Operation ... 18
The DDA cycle time ..19
The DDA pulse buffer ..20
The scaling gain ...21
The Error counter ...21
The Status register ...23
The frequency-to-voltage (F/V) converter23
Using multiple PCL-832s in one system24

Chapter 4 Programming .. 2 5

Software installation ... 26
Microsoft C drivers and Turbo C drivers 27

Special Procedures ...27
The Microsoft C Driver Parameter Files 28

PCLB.PAR ...28
HOME.PAR ...29
MACHINE.PAR ...30

Microsoft C driver functions .. 32
System functions ..32
Preparatory functions ...32
Motion functions ..35
Motion function return codes...42
Utility functions ...42

Turbo C low-level driver functions 45

Chapter 5 Register structure and format 4 9

I/O Address space.. 50
I/O address Map.. 50
Register format .. 51

Appendix A Calibration .. 5 7

VR Assignments ..58
Test-Points ..59

Chapter 1 General information 1

C
H

A
P

T
E

R

1
General information

2 PCL-832 User's Manual

I n t r o d u c t i o n

3-axis control

The PCL-832 3-axis Servo-motor Control Card turns your IBM PC or
compatible computer into a sophisticated position controller. The
card's custom ASIC implementation provides high performance at an
affordable price.

The PCL-832 uses digital differential analysis techniques to imple-
ment position control. Each axis has its own position control chip,
allowing completely independent control of up to three servo motors.

A special synchronization circuit synchronizes all three axes. The card
can supply a simulated tachometer output to the servo motor driver.
This signal makes a tachometer unnecessary in some applications,
reducing overall system costs.

Software Drivers

The PCL-832's programming library (accessible from Microsoft C)
supports high-level commands and functions, making control easy.
The library includes commands to set the DDA cycle time and
acceleration/deceleration curve as well as functions for linear interpo-
lation, circular interpolation, return home and jog. Numerous exam-
ples of driving programs have also been included on the utility/
software disk.

Chapter 1 General information 3

F e a t u r e s

• Independent 3-axis servo control

• Fully continuous closed-loop P+offset controller

• Industry-standard two-phase index position encoder interface

• Single-ended or differential encoder interface inputs

• x1, x2, x4 quadrature feedback input

• 12-bit analog output with ±10 V range

• Built-in F/V converter

• Easy programming from C and other high-level languages

• 3-axis linear interpolation

• 2-axis circular interpolation

• Half-size AT (ISA bus) add-on card

A p p l i c a t i o n s

• Precise position control

• Robotics control

• Machine control with up to three axes

• PC-based NC controller

4 PCL-832 User's Manual

S p e c i f i c a t i o n s

• No. axes: 3 independent

• Control algorithm : Proportional control

• Positional accuracy: ±1 quadrature count

• Effective travel length: No limit

• Output type: 12-bit D/A, ±10 V full scale

• DDA cycle time: 1 msec. to 2 sec. (programmable)

• Error counter : ±12 bit

• Tachometer simulation output (F/V converter): ±10 V at 250 KHz
(default), VR adjustable

• Home sensor input: 1 channel per axis

• Encoder input: Single-ended or differential

• Counts per encoder cycle: x1, x2, x4 (jumper selectable)

• Max. quadrature input freq. : 250 KHz

General

• Bus: 16-bit AT (ISA bus)

• IRQ : 2, 3, 5, 7, 10, 11, 12 or 15

• I/O addresses: 32 I/O ports

• Connector:DB-9 for servo control
DB-25 for encoder and home signals

• Power consumption: 5 V @ 500 mA max.
12 V @ 200 mA max.

• Dimensions: 7.3" x 4" (185 mm x 100 mm)

Chapter 1 General information 5

Board layout

6 PCL-832 User's Manual

Chapter 2 Installation 7

2
Instal lat ion

C
H

A
P

T
E

R

8 PCL-832 User's Manual

1 2 3 4 5

O N

A 9 8 7 6 5

Initial inspection

In addition to this manual the shipping container should contain the
PCL-832 card and a utility diskette. We carefully inspected the PCL-
832 mechanically and electrically before we shipped it. It should be
free of marks and scratches and in perfect electrical order on receipt.

As you unpack the card, check it for signs of shipping damage
(damaged box, scratches, dents, etc.). If it is damaged or fails to meet
its specifications, notify our service department or your local sales
representative immediately. You will need to contact the carrier so that
it can inspect the shipping carton and packing material. We will then
arrange to repair or replace the unit.

Remove the PCL-832 interface card from its protective packaging
carefully. Keep the antistatic package. Whenever you are not using the
board, please store it in the packaging for protection.

Warning! Discharge any static electric charge on your body by
touching grounded metal before you handle the
board. You should avoid contact with materials that
create static electricity such as plastic, vinyl, and
styrofoam. Handle the board by its edges to avoid
contacting the board's integrated circuits.

Switch and jumper settings

Before you start using your PCL-832, you have to set the card's base
I/O address, quadrature multiplier (for each channel), I/O wait state
level and the interrupt levels for DDA time and the error counter.

Base I/O address (SW1)

The PCL-832 requires 32 consecutive I/O addresses. DIP switch SW1
(shown below) sets the base I/O address.

Chapter 2 Installation 9

Choose a base address that is not in use by any other I/O device. A
conflict with another device may cause one or both devices to fail.
The factory address setting (hex 240) is usually free as it is reserved
for PC prototype boards.

Switch settings for various base addresses appear below:

Card I/O addresses (SW1)

Range (hex) Switch position

1 2 3 4 5

200 - 21F l ¡ ¡ ¡ ¡

220 - 23F l ¡ ¡ ¡ l

*240 - 25F l ¡ ¡ l ¡

×
300 - 31F l l ¡ ¡ ¡

×
3E0 - 3FF l l l l l

¡ = On l = Off * = default

Note: Switches 1-5 control the PC bus address lines as follows:

Switch 1 2 3 4 5
Address Line A9 A8 A7 A6 A5

Calculating the base address
The base address is calculated using simple mathematics. The
following example illustrates this.

Example
Calculate the base address of switch SW1.
Base address = 512+256+128+32 = 928 = 3A0 (Hex).

Base Decimal HEX
add. line value value

A9 512 200
A8 256 100
A7 128 80
A6 64 40
A5 32 20

ON

A
9

A
8

A
7

A
6

A
5

10 PCL-832 User's Manual

Quadrature input multiplier (JP1, JP2, JP3)

Jumper switches JP1, JP2 and JP3 select the quadrature input multipli-
er for channels 1, 2 and 3 respectively. Set these switches as below :
(only channel 1, JP1, is shown)

JP1 ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡

x1 x2 x4 (default)

DDA time and Error counter overflow
interrupt levels (JP4)

The jumper JP4 selects both the DDA time's and the Error counter's
interrupt levels (2, 3, 5, 7, 10, 11, 12, 15), as shown below:

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡

Do not select a level that is being used by another device unless you
have performed special programming to share several devices on one
interrupt.

I/O Wait state level (JP5)

Jumper JP5 (shown below) sets the wait state level of the PCL-832 to
0, 2, 3 or 4.

¡ ¡ 4

¡ ¡ 3

¡ ¡ 2

¡ ¡ 0

IRQ 15 12 11 10 7 5 3 2

ERC

DDA

Chapter 2 Installation 11

Connector pin assignments

You make all connections to the PCL-832 through one DB-25 and one
DB-9 connector, as shown below:

Connector pin assignments appear below: (only channel 1 shown -
channels 2 and 3 are similar)

CH1AIN+
D G N D

CH1AIN-

CH1BIN-

CH1INDEX-

D G N D

CH2AIN-

CH2BIN-

CH2INDEX-

D G N D

CH3AIN-

CH3BIN-

CH3INDEX-

D G N D

CH1BIN+

CH1INDEX+

C H 1 H O M E

CH2AIN+

CH2BIN+

CH2INDEX+

C H 2 H O M E

CH3AIN+

CH3BIN+

CH3INDEX+

C H 3 H O M E

1

2

3

4

5

6

7

10

8

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

C H 1 F V
C H 1 V C M D

A G N D

C H 2 F V

C H 3 V C M D

A G N D

C H 2 V C M D

A G N D

C H 3 F V

1

2

3

4

5

6

7

8

9

Pin Function
A G N D Analog signal ground

CH1VCMD Channel 1 voltage command output

CH1FV Channel1 F/V output

DGND Digital signal ground

CH1AIN+ Channel 1 A differential positive input

CH1AIN- Channel 1 A differential negative input

CH1BIN+ Channel 1 B differential positive input

CH1BIN- Channel 1 B differential negative input

CH1INDEX+ Channel 1 index differential positive input

CH1INDEX- Channel 1 index differential negative input

CH1HOME Channel 1 home sense input

CN1 CN2

12 PCL-832 User's Manual

Connector wiring

Differential/single-ended input
With differential inputs connect the negative wire to the negative pin
and the positive wire to the positive pin. For example, with channel 3
A connect the negative input wire to CH3AIN- and the positive wire
to CH3AIN+.

With single-ended inputs connect the input to the positive pin and
leave the negative pin open.

Test-Points and VRs

Test-Points
TP1 : CH1 F/V output
TP2 : CH2 F/V output
TP3 : CH3 F/V output
TP4 : CH1 DA output
TP5 : CH2 DA output
TP6 : CH3 DA output
TP7 : Analog ground

VR
VR1 : CH1 DA output full scale adjustment
VR2 : CH1 DA output offset adjustment
VR3 : CH1 F/V output full scale adjustment
VR4 : CH1 F/V output offset adjustment
VR5 : CH2 DA output full scale adjustment
VR6 : CH2 DA output offset adjustment
VR7 : CH2 F/V output full scale adjustment
VR8 : CH2 F/V output offset adjustment
VR9 : CH3 DA output full scale adjustment
VR10 : CH3 DA output offset adjustment
VR11 : CH3 F/V output full scale adjustment
VR12 : CH3 F/V output offset adjustment

Chapter 2 Installation 13

Hardware installation

Warning! Disconnect power from your PC whenever you
install or remove the PCL-832 or its cables

Installing the card in your computer:

1. Turn off the computer and all peripheral devices (such as printers
and monitors).

2. Disconnect the power cord and any other cables from the back of
the computer. Turn the chassis so the back of the unit faces you.

3. Remove the chassis cover (see your computer users guide if
necessary).

4. Locate the expansion slots at the rear of the unit and choose an
unused slot.

5. Remove the screw that secures the expansion slot cover to the
chassis. Save the screw to secure the PCL-832.

6. Carefully grasp the upper edge of the PCL-833 card. Align the
hole in the retaining bracket with the hole on top of the expansion
slot, and align the gold striped edge connector with the expansion
slot socket. Press the board firmly into the socket.

7. Replace the screw in the expansion slot retaining bracket.

8. Attach necessary accessories to the card.

9. Replace the chassis cover. Connect the cables you removed in step
2. Turn on the computer.

Hardware installation is now complete. The installation of the soft-
ware is described in Chapter 4.

14 PCL-832 User's Manual

Chapter 3 Operation 15

C
H

A
P

T
E

R

3
O p e r a t i o n

16 PCL-832 User's Manual

PCL-832 Operating Principles

Digital Differential Analysis

To understand how the PCL-832 works, it is necessary to understand
the principles of DDA (Digital Differential Analysis).

In order to obtain synchronization in a multi-joint servo motor system,
all axis start sending position commands simultaneously (T1), and
stop sending these commands simultaneously (T2) as well. The
duration of this period (T2 - T1) is defined as one DDA cycle. The
duration of the DDA cycle can be set (by software) from 1 msec. to 2
seconds.

Consider the figure below. For every pulse output, the servo motor
driver will advance the servo motor "one step" (n degrees). One pulse
therefore represents one position-command. You can set the number of
pulses in one DDA cycle, from 0 to 4095. The number of pulses in
one DDA cycle represents the total position change possible by that
DDA cycle.

DDA cycle
T1 T2

CH1

CH2

CH3

Chapter 3 Operation 17

The continuous pulse sequence output to the servo motor driver
ensures that a smooth position response is obtained. You determine the
direction of the motion by pulsing the CMD+ or CMD- channel. The
above work will be done by the motion control chip itself, you only
need to write the position information to the motion control chip
buffers before the DDA cycle starts.

Closed-loop position control

The PCL-832 uses proportional closed-loop position control to obtain
reliable and accurate results. It features an internal velocity feedback
loop and offset techniques to compensate for the steady-state error
that is caused by using small values on the P controller.

The functional block diagram of the PCL-832 motion control card is
shown below:

The DDA generates continuous command pulses through CMD+ and
CMD- channels (not shown on the figure). These command pulses are
fed into a summing circuit, together with the pulses generated by the
servo motor encoder device. The summing circuit determines the
difference between the two signals. The computed result is then fed
into the P pulse-offset controller. The P pulse-offset controller, which
has programmable gain (Kp), outputs a pulse. This pulse is fed into
the error counter, which drives the DAC chip in real-time.

This is a complete closed-loop position control system.

Summing
circuit

Gain & offset
circuit

Gain buffer

Velocity block

Error counter 12-bit DAC

F/V converter

Servo-motor
driver

motor

DDA pulse
buffer

DDA
generator

Control logic

Encoder feedback

18 PCL-832 User's Manual

A velocity block is provided in the motion control chip. Its purpose is
to add a velocity feedback loop in the whole system through a
frequency-to-voltage (F/V) converter. This internal loop impoves the
motion dynamics of the servo motor system.

These facilities make the PCL-832 very powerful and an easy-to-use
solution for your servo application needs.

O p e r a t i o n

In this section we take a look at how the PCL-832 accomplishes servo
motor control.

When the DDA cycle generator is enabled, the PCL-832 will generate
an interrupt at the start of the next (completion of the current) DDA
cycle (rising edge triggered). When this happens the figure set in the
DDA pulse buffer, n, is transferred to the DDA generator. This is the
number of pulses that will be output during the next DDA cycle.

You have to set a number in the DDA pulse buffer before the current
DDA cycle finishes, otherwise the next DDA cycle will output no
pulses.

The DDA generator generates the first of the n pulses. The pulse is
transferred to the Gain & offset circuit by the summing circuit. The
gain circuit can be seen as a programmable divider, which you can
control by software.

The gain circuit outputs a pulse to the Error counter. The error counter
increases/descreases (depending on the direction +/- of the pulse) its
value. The DAC is directly driven by the error counter, therefore when
the error counter's value is increased, the output voltage of the DAC
also increases. The servo-motor driver should respond by issuing a
step command to the motor.

If the motor responds and performs the required movement, a pulse is
generated by the encoder on the motor. This signal is fed back to the
summing circuit as a signal of the opposite direction. In other words -
if the original pulse was clockwise (+), then the feedback to the

Chapter 3 Operation 19

summing circuit will be anti-clockwise (-).

This signal is again fed to the error-counter, through the gain circuit,
which causes the error-counter to be decremented/incremented
(depending on the direction). If the whole operation was successful,
the error counter will therefore have a zero value at completion of the
pulse/motion.

It the motor does NOT respond, no signal is fed back to the summing
circuit, the error counter does not decrement, and a voltage will still
be output on the DAC. When the next pulse reaches the error counter
(through all the steps discussed), it will increment the value once
again. The output voltage on the DAC will therefore be higher,
prompting the servo motor (or perhaps the servo driver) to respond.

When the error counter reaches its maximum limit, 4095, it means
that there is a problem with the servo motor, the servo motor driver or
the encoder on the servo motor. Operation will be halted at this stage,
and the PCL-832 will have to be reset before normal operation can
continue.

The DDA cycle time

As previously discussed, the DDA cycle time refers to the time that
elapses between the starting of the pulse sequence, and the completion
of pulse output (for that cycle). To ensure synchronization between all
three channels, one DDA cycle time is used for all three channels.

To calculate the DDA cycle time you use the following formula :

DDA cycle time = 0.512ms x Register value (BASE + 04)

The register value referenced above can be set from 2 to 4094 (in
steps of 2) by writing the value into the register's address (or using one
of the library functions to do that). This means that the DDA cycle
time can be set from 1ms to 2 seconds. Remember that you have to set
up the DDA pulse buffer (with the next DDA cycle's no. of pulses)
before the completion of the current DDA cycle.

20 PCL-832 User's Manual

If the DDA cycle time is not set prior to operation, the default value of
1.024 ms (0.512 ms x 2) will be used. As your program probably has
to do some other work as well (like displaying the coordinates of the
motor etc.), it is best not to use the default value. This time can also be
too small for the type of processor you use. The overhead that the
processor has to cope with varies from application to application, with
many variables. The programming language you use, other tasks that
are running, your application program itself etc. are all factors that
influence the minimum DDA cycle time. A DDA cycle time of 24ms
is a value often used in PCL-832 applications.

The DDA pulse buffer

Even though the DDA cycle time is constant for all three channels, the
number of pulses output in the DDA cycle, is set for every channel.
Each channel therefore has its own DDA pulse buffer that contains the
desired number of pulses in the next DDA cycle, for that channel.

When the DDA cycle starts, the number in the DDA pulse buffer is
transferred from the buffer to the DDA pulse generator. The DDA
pulse buffer is cleared as soon as the value has been transferred to the
pulse generator. If you do not set a value in the DDA pulse buffer
before completion of the current DDA cycle, no pulses will be output
during the next DDA cycle.

The DDA pulse generator outputs the required number of pulses
evenly over the DDA cycle. This means that the time between pulses
will be (DDA cycle time / number of pulses) seconds.

The DDA pulse buffer format is shown below:

DDA Pulse buffer register format

B15 B14~B12 B11 ~ B0
D I R N/A D11 ~ D0

B15 ~ B0 Bit numbers

DIR DDA pulse direction
 0 - clockwise (CW)
 1 - anti-clockwise (CCW)

D11 ~ D0 DDA pulse number

Chapter 3 Operation 21

The scaling gain

Each of the three PCL chips has its own scaling gain. The scaling gain
lets you set the gain for each channel independently, and enables the
use of different gains accross different applications. The scaling gain
works as follows: when the SG is 1, the Error Counter is stepped up/
down with every pulse from the DDA pulse generator or the encoder
feedback. When the scaling gain is n, where 1 < n < 64, the Error
Counter will only be updated with every nth pulse. A larger scaling
gain reduces the system response, and position accuracy is ±n counts.

The Error counter

Each channel also has an independant 13-bit error counter. This
counter records the difference between the number of desired motor
movements, and the actual movements as registered by the servo
motor's encoder. The output of the error counter drives a DAC (digital-
to-analog convertor) which in turn is output to the servo motor driver.

The layout of the error counter is as follows :

Error counter register format

B15 B14~B12 B11 ~ B0
D I R N/A E11 ~ E0

B15 ~ B0 Bit numbers

DIR DDA pulse direction
 0 - clockwise (CW)
 1 - anti-clockwise (CCW)

E11 ~ E0 Error counter value

As previously discussed, the error counter will accumulate with
actual/desired pulse differences. When the error counter reaches its
limit (4095 if direction is 0, <0 if direction is 1), an overflow error
occurs and the counter is cleared. You will need to reset the PCL-832
when this happens.

22 PCL-832 User's Manual

DAC ranges
The table below shows the three ranges that output from the DAC can
be classified in. They are the CW saturation area, active area and the
CCW saturation area.

DAC ranges

D15 D11~D0 DA OUT (Vcmd)

0 FFF +9.995 V full scale CW
S
a
t
u
r
a
t
i
o
n

0 FFE +9.995 V full scale

0 801 +9.995 V full scale

0 800 +9.995 V full scale

0 7FF +9.995 V full scale

A
c
t
i
v
e

A
r
e
a

0 7FE +9.990 V full scale - 1LSB

0 '002 +9.765 mV +2 LSB

0 '001 +4.883 mV +1 LSB

0 '000 0V 0

1 FFF -4.883 mV -1 LSB

1 FFE -9.765 mV -2 LSB

1 801 -9.995 V -full scale - 1 LSB

1 800 -10.0 V -full scale

1 7FF -10.0 V -full scale CCW
S
a
t
u
r
a
t
i
o
n

1 7FE -10.0 V -full scale

1 '002 -10.0 V -full scale

1 '001 -10.0 V -full scale

Chapter 3 Operation 23

The Status register

The PCL-832 provides a status register for each channel. This register
contains information on the channel's sensor home, encoder index
input and the error counter overflow flag. If an overflow has occured,
you will have to reset this flag (which will be 0) to 1, by issuing the
reset command (BASE+0x1A).

The frequency-to-voltage (F/V) converter

In many servo motor applications the tachometer (TG) feedback is
used to improve system performance. The PCL-832 provides an
alternative to this method, as it features a F/V converter. This convert-
er uses feedback from the servo motor to produce an output that can
be applied to the servo motor driver's velocity feedback port.

This is called closed-loop velocity feedback.

To use this function your servo driver has be equipped with a F/V
input port, or the TG circuitry has to be modified to meet the F/V
output specifications.

The relationship between F/V convertor output voltage and encoder
output frequency is calculated as follows :

Motor maximum velocity : 3000 RPM
Encoder resolution: 1000 Pulses / revolution
PCL-832 AB phase multiplier: x2

Maximum encoder pulse output:

3000 RPM / 60 sec = 50 Revolution / sec.

Encoder output = 50 x 1000 = 50 K pulses / sec.
F/V input pulse rate = 50 K x 2 = 100 K pulses / sec.

You have to calibrate the F/V 's full scale voltage output to 10V or
-10V with the F/V input at 100KHz. You also have to adjust the F/V
offset to 0V when there is no encoder output. As system conditions
may vary, it is best to calibrate your PCL-832 under various condi-
tions.

24 PCL-832 User's Manual

DDA cycle time differences

Using multiple PCL-832s in one system

Instal lat ion
When using multiple PCL-832 cards in one system, the cards have to
be setup as follows:

Select one card as the master card
Setup the interrupt levels for the DDA cycle time and the error counter
overflow on the master card (using JP4)
Leave the slave cards' DDA cycle time interrupt open
Set the slave cards' error counter overflow interrupt the same as the
master card's
Remove resistor R53 from all the slave cards

P r o g r a m m i n g
The instructions to enable the cards' DDA cycles must be called as
close in succession as possible. The time difference between the DDA
cycles of the cards should be as small as possible. The following
diagram shows the time differences between the DDA cycles of the
cards.

DDA cycle

DDA cycle

DDA cycle

Slave 2 DDA cycle enabled

Slave 1 DDA cycle enabled

Master DDA cycle enabled

Time
difference t

Chapter 4 Programming 25

4
P r o g r a m m i n g

C
H

A
P

T
E

R

26 PCL-832 User's Manual

Programming the PCL-832

There are two ways to program the PCL-832: using the driver pro-
grams included on the utility disk and accessing the card's registers
directly. Using the drivers simplify programming to a large extent. The
driver functions handle the necessary I/O port instructions and you
only have to call them from your program.

Accessing the I/O ports directly requires a better understanding of the
PCL-832's operation and hardware, register structure and data format.
You will also need a basic understanding of PC interrupts and the
DDA principles. Although this is more complicated than using the
supplied drivers, it gives you all the flexibility you need to customize
the control for your specific application.

Software installation

Insert the utility floppy disk in your PC's floppy drive. Let's assume
it's drive B.

Create a directory on your hard disk where the files will be stored, eg.
C:\PCL832, and change to that directory.

The DOS commands will be

cd\
md PCL832
cd PCL832

Now you have to copy all the files from the floppy drive to your hard
drive. We use XCOPY because it creates all the subdirectories, and
this simplifies the copy process.

The DOS command will be

XCOPY B:\. /s

The files should now be copied to the following directories:

C:\PCL832\MSC60.C\DEMO MicroSoft C examples
C:\PCL832\MSC60.C\LIB MicroSoft C Libraries
C:\PCL832\TURBOC Turbo C include file and

example program

Chapter 4 Programming 27

Microsoft C drivers and Turbo C drivers

The driver routines supplied with your PCL-832 were written for use
with Microsoft C and Turbo C. The functions covered by the
Microsoft C library are divided into system functions, preparatory
functions, motion functions and utility functions. The next two
sections describe the use of these functions.

The third section describes the Turbo C low-level drivers. These
drivers were written in Turbo C, and although only the basic functions
have been supplied, they should provide an adequate backbone for
your application. The source code is also supplied, which you can use
and customize as needed.

However, if you do not have a basic understanding of the concepts of
how the PCL-832 operates, the explanations/instructions given may
not make a lot of sense. It is advisable to read chapters 3 and 5 before
you go any further.

Special Procedures

When you use the Microsoft C libraries, the following is important:

1) The function main() is already used by the driver. Use
usermain() instead

2) The 8253 counter 0 (the IRQ generator in the PC) is used by the
driver, and the original value is modified for driver
purposes. DO NOT modify this register's value.

3) On the software diskette, there are three parameter files that are
used by the driver. Copy these files to the program directory
otherwise the driver will not work. The next section gives a brief
description of the parameter files.

4) When using the driver, reference is made to an incremental
coordinate system and an absolute coordinate system. When you
operate in the absolute coordinate system, references are made to
three fixed axis. In the incremental system, any position change
commands will occur relative to the current position of the
motors.

5) The libraries require a numeric co-processor to be present.

28 PCL-832 User's Manual

The Microsoft C Driver Parameter Files

There are three parameter files, namely PCLB.PAR, HOME.PAR and
MACHINE.PAR. Their contents is described below. To change the
parameter files to suit your application, use any ASCII editor to make
the modifications.

PCLB.PAR

This file contains information on the PCL-832 card.

File contents
Base address = 240h
DDA irq no. = 5
Over irq no. = 3
GAIN1 = 1
GAIN2 = 1
GAIN3 = 1

Parameter descriptions

P a r a m e t e r F u n c t i o n

Base address The base address of the PCL-832

DDA irq no. The DDA cycle generator interrupt number

Over irq no. The error counter overflow interrupt number

GA IN1 The gain for each channel
GA IN2
GA IN3

Chapter 4 Programming 29

HOME.PAR

This file contains information on the home position of the servo
system.

File contents
P dir - X = 0 (0-7)
P dir - Y = 0 (0-7)
P dir - Z = 0 (0-7)
S on - X = 1
S on - Y = 1
S on - Z = 1
I on - X = 1
I on - Y = 1
I on - Z = 1

Parameter descriptions

P a r a m e t e r F u n c t i o n

P dir - X This parameter consists of three bits. The
P dir - Y purpose of the bits are as follows:
P dir - Z Bit1: When the 'Go Home' command is

received, the motor will move in this
direction, until it finds home.
0 = CW, 1 = CCW

Bit2: When the motor arrives at the home
position, it stops, and then starts moving in
this direction to leave home sense.
0 = CW, 1 = CCW

Bit3: When the motor leaves home, it stops,
and then starts moving in this direction to
find the motor index. This is necessary
because the mechanical home switch
(maybe a broken light-beam etc) is very
wide (eg.100 pulses). The first index
position found is therefore a much more
reliable reference position.
0 = CW, 1 = CCW

S on - X Home signal - active high or active low
S on - Y 0 = active low
S on - Z 1 = active high

I on - X Index signal - active high or active low
I on - Y 0 = active low
I on - Z 1 = active high

30 PCL-832 User's Manual

MACHINE.PAR

The parameters in this file describe the physical environment that the
servo system is used in.

File contents
P001 = 4500.000
P003 = 0
P011 = 10.000
P012 = 10.000
P013 = 10.000
P021 = 1.000
P022 = 1.000
P023 = 1.000
P031 = 1000
P032 = 1000
P033 = 1000
P041 = 1000
P042 = 1000
P043 = 1000
P051 = 5000
P052 = 5000
P053 = 5000
P061 = -5000
P062 = -5000
P063 = -5000
P071 = 0.000
P072 = 0.000
P073 = 0.000

Parameter descriptions

P a r a m e t e r F u n c t i o n

P001 maximum speed (mm/sec)

P 0 0 3 logical and mechanical direction (1=reversed)
3 bits: bit0 = 1st, bit1 = 2nd, bit3 = 3rd axis

P011, P012, P013 distance moved per revolution (mm/rev)

*P021, P022, P023 gear ratio R2/R1 (motor/device)

P031, P032, P033 #pulses per revolution

P041, P042, P043 R P M

*P051, P052, P053 max. length in CW (+) direction

*P061, P062, P063 max. length in CCW (-) direction

*P071, P072, P073 offset between logical and physical origin (mm)

* - refer to the diagram on the next page

Chapter 4 Programming 31

X

Y

Z

-X

-Z

-Y

Mechanical Home

Logical Home

Motor

R1

R2

Min X (CCW) Max X (CW)

Servo motor system - physical layout

32 PCL-832 User's Manual

Microsoft C driver functions

This section describes the Microsoft C library functions that are
supplied with the PCL-832. If you do not use Microsoft C, these
functions will not be of much use to you, as the source code is not
included.

Each function is also illustrated in various program examples. The
relevant example names appear in square brackets [] after the
function name. These example files are located in the
\PCL832\DEMO directory.

System functions

MCC_init_motion [all]
Function This function initializes the PCL-832, and must

be called before any other functions

Syntax int MCC_init_motion()

Return value 0 if succesful, other value if not

MCC_close_motion [all]
Function Closes motion control functions. This function

should be called when operation is complete.
After this function is called, other functions will
not respond as intended.

Syntax int MCC_close_motion()

Return value 0 if successful, other value if not

Preparatory functions

MCC_set_dda [MEX2.C]
Function Set DDA cycle time

Syntax unsigned int MCC_set_dda(unsigned int t)

Parameter t : value of DDA cycle time, unit:msec

Return value t if successful, other value if not

Chapter 4 Programming 33

MCC_get_dda [MEX2.C]
Function returns the DDA cycle time

Syntax unsigned int MCC_get_dda()

Return value the current DDA cycle time

MCC_get_errcnt [MEX3.C]
Function gets the error counter value of each axis

Syntax int MCC_get_errcnt(int *cnt1,
 int *cnt2,int *cnt3)

Parameter *cnt1 : a pointer to the 1st axis error counter
value

*cnt2 : a pointer to the 2nd axis error counter
value

*cnt3 : a pointer to the 3rd axis error counter
value

Return value 0 if successful, other value if not

MCC_set_fspd [MEX4.C]
Function specifies the move speed

Syntax float MCC_set_fspd(float fspd)

Parameter fspd : the move speed, unit mm/sec

Return value fspd if successful, other value if not

MCC_get_fspd [MEX4.C]
Function gets the move speed

Syntax float MCC_get_fspd()

Return value current move speed if successful, <0 if not

34 PCL-832 User's Manual

MCC_set_acc_step [MEX4.C]
Function specifies the acceleration step

Syntax int MCC_set_acc_step(int step)

Parameter step : the step of DDA cycle

Return value acceleration step if successful, other value if not

MCC_get_acc_step [MEX4.C]
Function gets the acceleration step

Syntax int MCC_get_acc_step()

Return value acceleration step if successful, <0 if not

MCC_set_dec_step [MEX4.C]
Function sets the deceleration step

Syntax int MCC_set_dec_step(int step)

Parameter step : the step of DDA cycle

Return value deceleration step if successful, other value if not

MCC_get_dec_step [MEX4.C]
Function gets the deceleration step

Syntax int MCC_get_dec_step()

Return value deceleration step if successful, <0 if not

MCC_set_ptp_spd [MEX5.C]
Function specifies the percentage ratio of the point to

point movement speed, relative to P001 in
MACHINE.PAR

Syntax int MCC_set_ptp_spd(int ratio)

Parameter ratio : movement speed ratio

Return value ratio if successful, other value if not

Chapter 4 Programming 35

MCC_set_abs [MEX12.C]
Function specifies absolute coordinate system

Syntax MCC_set_abs()

MCC_set_inc [MEX12.C]
Function specifies incremental coordinate system

Syntax MCC_set_inc()

MCC_get_pos_type [MEX12.C]
Function gets the current coordinate system mode

Syntax int MCC_get_pos_type()

Return value 1 : absolute coordinate system mode
0 : incremental coordinate system mode

Motion functions

MCC_go_home [MEX12.C]
Function homes the machine

Syntax int MCC_go_home(float spd1,
float spd2, float spd3,
int odr1, int odr2, int odr3)

Parameter spd1 : 1st axis return home speed (mm/sec)
spd2 : 2nd axis return home speed (mm/sec)
spd3 : 3rd axis return home speed (mm/sec)
odr1 : the priority of 1st axis return home
odr2 : the priority of 2nd axis return home
odr3 : the priority of 3rd axis return home

priority level 1, 2 or 3
set the priority level to 255 if the axis is not used

Return value 0 if successful, other value if not

36 PCL-832 User's Manual

MCC_check_home [MEX12.C]
Function checks if the MCC_go_home function has

completed

Syntax int MCC_check_home()

Return value 0 : function still in progress
1 : function has completed
2 : MCC_go_home was not called

MCC_line [MEX4.C]
Function moves the current point to a specified point by

linear interpolation

Syntax int MCC_line(float dx1,float dx2,
 float dx3)

Parameter dx1 : the end position of X axis in absolute
coordinate mode

the movement length of X axis in
incremental coordinate mode

dx2 : the end position of Y axis in absolute
coordinate mode

the movement length of Y axis in
incremental coordinate mode

dx3 : the end position of Z axis in absolute
coordinate mode

the movement length of Z axis in
incremental coordinate mode

Return value 0 if successful, other value if not

Chapter 4 Programming 37

MCC_line_x [MEX4.C]
Function moves the X axis from the current point to a

specified point by linear interpolation

Syntax int MCC_line_x(float dx)

Parameter dx : the end position of X axis in absolute
coordinate mode

the movement length of X axis in
incremental coordinate mode

Return value 0 if successful, other value if not

MCC_line_y [MEX4.C]
Function moves the Y axis from the current point to a

specified point by linear interpolation

Sytax int MCC_line_y(float dx)

Parameter dx : the end position of Y axis in absolute
coordinate mode

the movement length of Y axis in
incremental coordinate mode

Return value 0 if successful, other value if not

MCC_line_z [MEX4.C]
Function moves the Z axis from the current point to a

specified point by linear interpolation

Sytax int MCC_line_z(float dx)

Parameter dx : the end position of Z axis in absolute
coordinate mode

the movement length of Z axis in
incremental coordinate mode

Return value 0 if successful, other value if not

38 PCL-832 User's Manual

MCC_circle_xy [MEX6.C]
Function plots a circle on the xy plane

Sytax int MCC_circle_xy(float cx1,
 float cx2)

Parameter cx1, cx2 : the center point of the circle in
xy plane

Return value 0 if successful, other value if not

MCC_circle_zx [MEX6.C]
Funtcion plots a circle on the zx plane

Syntax int MCC_circle_zx(float cx3,
 float cx1)

Parameter cx3, cx1 : the center point of the circle in
 zx plane

Return value 0 if successful, other value if not

MCC_circle_yz [MEX6.C]
Function plots a circle on the yz plane

Syntax int MCC_circle_yz(float cx2,
 float cx3)

Parameter cx2, cx3 : the center point of the circle in
yz plane

Return value 0 if successful, other value if not

MCC_arc_xy [MEX7.C]
Function plots an arc on the xy plane

Syntax int MCC_arc_xy(float rx1,
 float rx2, float dx1, float dx2)

Parameter rx1, rx2 : any point of the arc between
current point and end point

dx1, dx2 : the end point of arc in xy plane

Return value 0 if successful, other value if not

Chapter 4 Programming 39

MCC_arc_zx [MEX7.C]
Function plots an arc on the zx plane

Syntax int MCC_arc_zx(float rx3,
 float rx1, float dx3, float dx1)

Parameter rx3, rx1 : any point of the arc between
the current point and end point

dx3, dx1 : the end point of arc in zx plane

Return value 0 if successful, other value if not

MCC_arc_yz [MEX7.C]
Function plots an arc on the yz plane

Syntax int MCC_arc_yz(float rx2,
 float rx3, float dx2, float dx3)

Parameter rx2, rx3 : any point of the arc between
current point and end point

dx2, dx3 : the end point of arc in yz plane

Return value 0 if successful, other value if not

MCC_ptp [MEX5.C]
Function moves from current point to a specified point at

maximum velocity and acceleration

Syntax int MCC_ptp(float dx1, float dx2,
 float dx3)

Parameter dx1, dx2, dx3 : the end position in
absolute coordinate mode

the movement length in incre-
mental coordinate mode

Return value 0 if successful, other value if not

MCC_ptp_x [MEX5.C]

40 PCL-832 User's Manual

Function moves the x axis current point to a specified
point at maximum velocity and acceleration

Syntax int MCC_ptp_x(float dx)

Parameter dx : the end position of X axis in absolute
coordinate mode

the movement length of X axis in
incremental coordinate mode

Return value 0 if successful, other value if not

MCC_ptp_y [MEX5.C]
Function moves the y axis current point to a specified

point at maximum velocity and acceleration

Syntax int MCC_ptp_y(float dx)

Parameter dx : the end position of Y axis in absolute
coordinate mode

the movement length of Y axis in
incremental coordinate mode

Return value 0 if successful, other value if not

MCC_ptp_z [MEX5.C]
Function moves the z axis current point to a specified

point at maximum velocity and acceleration

Syntax int MCC_ptp_z(float dx)

Parameter dx : the end position of Z axis in absolute
coordinate mode

the movement length of Z axis in
incremental coordinate mode

Return value 0 if successful, other value if not

Chapter 4 Programming 41

MCC_motion_delay [MEX12.C]
Function delays for a specified time

Syntax int MCC_motion_delay(unsigned int t)

Parameter t : the delay time value, unit : 0.1sec

Return value 0 if successful, other value if not

MCC_jog_i [MEX8.C]
Function moves a specified # pulses in one DDA cycle

Syntax int MCC_jog_i(char x, char d,
 float d_pulse)

Parameter x(x = 1, 2, 3) : specifies the axis

d : the movement direction

d = +1 CW
d = -1 CCW

d_pulse : # pulses

Return value 0 if successful, other value if not

MCC_jog_s [MEX9.C]
Function moves a specified distance at a specified speed

Syntax int MCC_jog_s(char x, char d,
 int s_ratio, float d_mm)

Parameter x(x = 1, 2, 3) : specifies the axis

d : the movement direction

d = +1 CW
d = -1 CCW

d_mm : movement distance (unit : mm)

s_ratio : movement speed ratio to P001
in MACHINE.PAR

Return value 0 if successful, other value if not

42 PCL-832 User's Manual

MCC_jog_c [MEX10.C]
Function moves at a specified speed

Syntax int MCC_jog_c(char x, char d,
 int s_ratio)

Parameter x(x = 1, 2, 3) : specifies the axis

d : the movement direction

d = +1 CW
d = -1 CCW

s_ratio : the movement speed ratio (%)

Return value 0 if successful, other value if not

Note: The motor will keep on moving at the specified speed until
MCC_motion_hold is executed. To abort the movement, call
MCC_motion_abort.

Motion function return codes

The return codes of the motion functions have the following meaning:

0: Function successful
-1: The system queue buffer is full. Call the function again
-2: An error has occurred. Call MCC_get_errcode to get the error

code, and call MCC_clear_error to clear the error flag
-3: fspd = 0

Utility functions

MCC_motion_hold [MEX11.C]
Function holds the current machine curve

Syntax int MCC_motion_hold()

Return value 0 if successful, other value if not

MCC_motion_abort [MEX10.C]
Function aborts the motion curve that was held

Syntax int MCC_motion_abort()

Return value 0 if successful, other value if not

Chapter 4 Programming 43

MCC_motion_conti [MEX11.C]
Function continues the motion that was held

Syntax int MCC_motion_conti()

Return value 0 if successful, other value if not

MCC_get_cpos [MEX11.C]
Function gets the current motion position, unit : mm

Syntax int MCC_get_cpos(float *x1,
 float *x2, long *x3)

Parameter *x1 : the pointer to the X axis current
position data

*x2 : the pointer to the Y axis current
position data

*x3 : the pointer to the Z axis current
position data

Return value 0 if successful, other value if not

MCC_get_ppos [MEX11.C]
Function gets the current motion position, unit : pulse

Syntax int MCC_get_ppos(long *x1,
 long *x2, long *x3)

Parameter *x1 : the pointer to the X axis current
position data

*x2 : the pointer to the Y axis current
position data

*x3 : the pointer to the Z axis current
position data

Return value 0 if successful, other value if not

44 PCL-832 User's Manual

MCC_check_stop [MEX10.C]
Function checks if the current motion curve has finished

Synatx int MCC_check_stop()

Return value 0 : current motion still in progress
1 : no motion in progress

MCC_get_errcode
Function Returns the last error code

Synatx int MCC_get_errcode(int *errcode)

Parameters *errcode : a pointer to an array of integers
The array should have more
than 20 elements

Error code list: 0xF101 : Error opening parameter file
0xF104 : Arc function parameters invalid
0xF201 : DDA interrupt error
0xF202 : Error counter overflow
0xF301 : X-axis out of range
0xF302 : Y-axis out of range
0xF303 : Z-axis out of range
0xF304 : Circle or Arc interpolation error
0xF601 : Contact technical support
0xF602 : Contact technical support

Return value The error code

MCC_clear_error
Function clear error buffer

Synatx int MCC_clear_error()

Return value 0 if successful, other value if not

MCC_check_delay
Function checks if the MCC_delay_motion has finished

Synatx int MCC_check_delay()

Return value 0 : current motion_delay function in progress
1 : no motion_delay in progress

Chapter 4 Programming 45

Turbo C low-level driver functions

This section describes the Turbo C low-level driver functions that
were supplied on the utility disk. These functions are not in a library,
they come in a source code file. You can directly include the source
file into your program, modify it, compile it to a library etc.

The source code and an example file can be found in the
\PCL832\DRIVER directory.

These are by no means a complete set of functions for the PCL-832.
Their only purpose is to show you how easy it is to program the
registers of the PCL-832 directly. The example program illustrates the
use of these functions, and how to include them in a C program.

The following functions are available:

PCL832_reset
Function Resets the PCL-832

Syntax PCL832_reset()

Return value none;

PCL832_enable_dda
Function Enables the PCL-832 DDA pulse generator

Syntax PCL832_enable_dda();

Return value none;

PCL832_set_dda_cycle_time
Function Sets the PCL-832 dda cycle time

Syntax int PCL832_set_dda_cycle_time(int
 ddatime)

Parameter ddatime : Specifies the DDA cycle time
value(unit ms), 1 - 2000

Return value 0 : success
-1 : dda time value error

46 PCL-832 User's Manual

PCL832_set_dda_pulse
Function Sets the dda pulse number for next dda_cycle

Syntax int PCL832_set_dda_pulse(int
 axis, int dir, int dda_pulse)

Parameter axis : Specifies the axis number 1,2 or 3

dir : specified the move direction,
0 = CW
1 = CCW

dda_pulse : no. of pulses, 0 - 4095

Return value 0 : success
-1 : axis number error
-2 : direction error
-3 : dda pulse number error

PCL832_set_gain
Function Sets the gain for an axis

Syntax int PCL832_set_gain(int axis, int
 gain)

Parameter axis : axis number 1,2 or 3.

gain : gain value, 0 - 63

Return value 0 success
-1 : axis number error
-2 : gain value error

Chapter 4 Programming 47

PCL832_get_errcnt
Function Returns the error counter value

Syntax int PCL832_get_errcnt(int axis,
int *errcnt)

Parameter axis : axis number 1,2 or 3.

*errcnt : pointer to the error counter data

Return value 0 : success
-1 : axis number error

PCL832_get_status
Function Returns the home, index and error counter status

Syntax int PCL832_get_status(int axis,
 int *status)

Parameter axis : axis number 1,2 or 3.

*status: pointer to the status data

bit 0 : Home switch status
bit 1 : Index status
bit 2 : Error counter overflow status

Return value 0 : success
-1 : axis number error

48 PCL-832 User's Manual

Chapter 5 Register structure and format 49

C
H

A
P

T
E

R

5
Register structure
and format

50 PCL-832 User's Manual

I/O Address space

The PCL-832 uses 32 consecutive addresses in the PC I/O address
space. DIP switch SW1 sets the card's base, or beginning address.
Specific I/O ports are referred to by their offset from the base address,
BASE. For example, the address for the seventh register is BASE+6.

I/O address Map

The following table gives the assignment of each of the card's ports.

I/O port assignments

Port Read Write
BASE+0 CH1 error counter value CH1 DDA pulse buffer

BASE+2 CH1 status CH1 scaling gain

BASE+4 DDA cycle time

BASE+8 CH2 error counter value CH2 DDA pulse buffer

BASE+0A CH2 status CH2 scaling gain

BASE+10 CH3 error counter value CH3 DDA pulse buffer

BASE+12 CH3 status CH3 scaling gain

BASE+18 DDA cycle gen. enable

BASE+1A PCL-832 RESET

Chapter 5 Register structure and format 51

Register format

BASE + 0

R e a d CH1 error counter value

Base + 0: Register Layout (Read)

D15 D14 ~ D12 D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

D I R N/A E11 E10 E 9 E 8 E 7 E 6 E 5 E 4 E 3 E 2 E1 E 0

DIR : The direction of the movement
0 : CW
1 : CCW

E11 ~ E0 : The error counter value

Write CH1 DDA pulse buffer

Base + 0: Register Layout (Write)

D15 D14 ~ D12 D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

D I R N/A D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

DIR : The direction of the DDA pulse
0 : CW
1 : CCW

D11 ~ D0 : The DDA pulse number

52 PCL-832 User's Manual

B A S E + 0 2

R e a d CH1 Status

Base + 02: Register Layout (Read)

D15 ~ D4 D 3 D 2 D 1 D 0

 N/A E-OV N/A Index H o m e

E-OV : The Error counter overflow status
0 : An overflow has occurred
1 : An overflow has not occurred

INDEX : The index input status
0 : The index input is LOW
1 : The index input is HIGH

HOME : The home input status
0 : The home input is HIGH
1 : The home input is LOW

Write CH1 Scaling Gain

Base + 02: Register Layout (Write)

D15 ~ D8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

 N/A N/A N/A S 5 S 4 S 3 S 2 S 1 S 0

S5 ~ S0 : The Scaling Gain value

B A S E + 0 4

Write The DDA cycle time multiplier

Base + 04: Register Layout (Write)

D15~D12 D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

N/A F11 F10 F 9 F 8 F 7 F 6 F 5 F 4 F 3 F 2 F1 F 0

F11 ~ F0 : The DDA cycle time value

DDA cycle time = 0.512ms * Register value (F11~F0)

Chapter 5 Register structure and format 53

B A S E + 0 8

R e a d CH2 Error counter value

Base + 08: Register Layout (Read)

D15 D14 ~ D12 D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

D I R N/A E11 E10 E 9 E 8 E 7 E 6 E 5 E 4 E 3 E 2 E1 E 0

DIR : The direction of movement
0 : CW
1 : CCW

E11 ~ E0 : The Error counter value

Write CH2 DDA pulse buffer

Base + 08: Register Layout (Write)

D15 D14 ~ D12 D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

D I R N/A D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

DIR : The direction of DDA pulse
0 : CW
1 : CCW

D11 ~ D0 : The DDA pulse number

BASE+0A

Write CH2 Scaling Gain

Base + 0A: Register Layout (Write)

D15 ~ D8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

N/A N/A N/A S 5 S 4 S 3 S 2 S 1 S 0

S5 ~ S0 : The Scaling Gain value

54 PCL-832 User's Manual

BASE+0A

R e a d The CH2 Status

Base + 0A: Register Layout (Read)

D15 ~ D4 D 3 D 2 D 1 D 0

 N/A E-OV N/A INDEX HOME

E-OV : The Error counter overflow status
0 : An overflow has occurred
1 : An overflow has not occurred

INDEX : The index input stauts
0 : The index input is LOW
1 : The index input is HIGH

HOME : The home input status
0 : The home input is HIGH
1 : The home input is LOW

B A S E + 1 0

R e a d CH3 Error counter value

Base + 10: Register Layout (Read)

D15 D14 ~ D12 D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

D I R N/A E11 E10 E 9 E 8 E 7 E 6 E 5 E 4 E 3 E 2 E1 E 0

DIR : The direction of movement
0 : CW
1 : CCW

E11 ~ E0 : The Error counter value

Chapter 5 Register structure and format 55

Write CH3 DDA pulse buffer

Base + 02: Register Layout (Write)

D15 D14 ~ D12 D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

D I R N/A D11 D10 D 9 D 8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

DIR : The direction of DDA pulse
0 : CW
1 : CCW

D11 ~ D0 : The DDA pulse number

B A S E + 1 2

R e a d CH3 Status

Base + 12: Register Layout (Read)

D15 ~ D4 D 3 D 2 D 1 D 0

N/A E-OV N/A INDEX HOME

E-OV : The Error counter overflow status
0 : The Error counter is overflow
1 : The Error counter is not overflow

INDEX : The index input stauts
0 : The index input is LOW
1 : The index input is HIGH

HOME : The home input status
0 : The home input is HIGH
1 : The home input is LOW

Write CH3 Scaling Gain

Base + 02: Register Layout (Read)

D15 ~ D8 D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0

N/A N/A N/A S 5 S 4 S 3 S 2 S 1 S 0

S5 ~ S0 : The Scaling Gain value

56 PCL-832 User's Manual

B A S E + 1 8

Write DDA cycle generator enable

You can write any value to this register, as external logic on the
address lines enables the DDA cycle generator.

BASE+1A

Write PCL-832 reset

You can write any value to this register, as external logic on the
address lines resets the PCL-832.

Appendix A Calibration 57

A
 Calibration

A
P

P
E

N
D

IX

58 PCL-832 User's Manual

Calibration

It is important to ensure that all measurement devices are calibrated
regularly in order to maintain accuracy. A calibration program,
CALB832.EXE, is provided on the PCL-832 software disk to assist
with the calibration procedure.

The minimum equipment required to perform a satisfactory calibra-
tion is a 4½-digit digital multimeter.

Calibration is easily performed using the CALB832.EXE program.
This program is very user-friendly and will guide you through the
calibration and set-up procedure. A variety of prompts and graphic
displays will direct you to make the appropriate adjustments.

You should use this section in conjunction with the CALB832.EXE
program, as it does not contain precise calibration instructions.

VR Assignments

The PCL-832 has 12 on-board VRs (variable resistors). They enable
you to make accurate calibration adjustments for each axis’s DA
offset, F/V offset and full-scale output. The location of each VR is
indicated in the figure on the next page. The function of each VR is
listed below:

VR1 : CH1 DA output full scale adjustment
VR2 : CH1 DA output offset adjustment
VR3 : CH1 F/V output full scale adjustment
VR4 : CH1 F/V output offset adjustment
VR5 : CH2 DA output full scale adjustment
VR6 : CH2 DA output offset adjustment
VR7 : CH2 F/V output full scale adjustment
VR8 : CH2 F/V output offset adjustment
VR9 : CH3 DA output full scale adjustment
VR10 : CH3 DA output offset adjustment
VR11 : CH3 F/V output full scale adjustment
VR12 : CH3 F/V output offset adjustment

Appendix A Calibration 59

Test-Points

The PCL-832 has seven test points. They enable you to connect the
DAC or F/V output to a voltage meter when you are doing calibration.
The location of each test-point is indicated in the figure below. The
following can be measured at each test-point:

TP1 : CH1 F/V output
TP2 : CH2 F/V output
TP3 : CH3 F/V output
TP4 : CH1 DA output
TP5 : CH2 DA output
TP6 : CH3 DA output
TP7 : Analog ground

VR assignments and test points

(3432) 49-3459

Москва: Телефон: (095) 234-0636 (4 линии)
Факс: (095) 234-0640
BBS: (095) 336-2500
Web: http://www.prosoft.ru
E-mail: root@prosoftmpc.msk.su
Для писем: 117313, Москва, а/я 81

С.-Петербург: (812) 325-3790
Екатеринбург:

