
Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 1 of 1

Problem:
An application needs to boot from flash disk with a full POSIX compliant real time
operating system.

Solution:
If your application requires this type of functionality, it can be achieved by using
QNX real time operating system. See the following.

WHAT IS AN EMBEDDED SYSTEM
Often in today's control market, computers are referred to as an embedded
computer. Even though this terminology is commonly used, there is still some
confusion about what comprises an embedded computer. An embedded computer is
basically the same as a desktop with some significant differences.

The first difference is that an embedded system generally does not use a hard drive,
a SCSI drive, or another form of non-volatile device for its secondary storage.
Embedded systems generally use what is called a solid state drive or SSD to store
the operating system and the applications software.

The second difference is that an embedded computer does not necessarily have to
have a keyboard or a video monitor attached to the system. Although most
embedded computers support a keyboard and a monitor, these functions are also
provided through one of the serial ports. This allows a system to be configured and
run by connecting a terminal or another computer to the serial port.

The third difference is that an embedded system is usually smaller than a desktop
computer. This allows the system to be buried, or embedded, in a cabinet or a piece
of equipment. This means that although the computer is providing some control or
data gathering functions, it is not obvious that there is even a computer installed in
the equipment. As a matter of fact, some system operators are often unaware that
when they enter information on a keypad or read information from an LCD display,
this is in many respects similar to the computer they have on their desk at home.

WHY USE AN EMBEDDED COMPUTER
If an embedded computer is so similar to a desktop, why use one at all? Using an
embedded computer in a system gives several advantages over a desktop computer.
The first advantage is that embedded computers are designed to survive in harsh
environments. The second advantage is the ability to operate without a hard drive
or other type of mechanical device which makes these systems more reliable. The
third advantage is the small size of an embedded computer allows the system to be
implemented in less space, saving money by requiring less room in the enclosure
used.

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 2 of 2

WHICH OPERATING SYSTEM MAKES SENSE
This question can only be answered by the people doing the system design. Octagon
provides DOS as the basic operating system for its embedded computers. DOS is
provided with the CPU in the BIOS EPROM. For many applications, DOS is more
than adequate. The advantages of using DOS in a system include a wide base of
existing software, extensive user knowledge; most personal computers have DOS
installed on them, and the programming environment is fairly simple.

Sometimes the application requires a higher performance level than can be achieved
with DOS. It is in these instances that the flexibility of an Octagon system can be
utilized. Because Octagon CPUs are AT compatible systems, the user is not locked
into a particular operation system. The user can select any number of operating
systems that will run successfully on an Octagon CPU. One of the most popular
operating systems other than DOS that is used in embedded systems is QNX. QNX
is a POSIX compliant real time operating system that is designed to be used in high
speed and critical control applications. A significant advantage using QNX is the
support for embedded systems found in QNX. Octagon currently has several CPUs
that can be used to provide an embedded system running QNX. These CPUs are the
5025A, the PC-450, the 7004 and the 5066. The 5025A and the PC-450 embedded
file system is currently provided with the Embedded Kit that can be purchased from
QNX. The 5066 and the 7004 embedded file system can be obtained from Octagon
Systems.

HOW QNX IS EMBEDDED ON AN OCTAGON CPU
QNX is implemented in an Octagon CPU as an embedded system by placing the
QNX file system on a solid state disk. This disk is then selected as the bootable
drive and the QNX operating system will run when the CPU is powered up.

When a user selects QNX as the operating system for an embedded design, the
utilities and file system managers are provided to allow QNX to be configured to
support a file system on an SSD. The actual QNX operating system must be
purchased from QNX. Octagon, although familiar with QNX, is not a source for the
QNX operation system.

The minimum system requirements for the QNX operating system is an Intel 386
compatible processor, and a CPU that has an embedded file system manager
developed for it. The software requirements are QNX version 4.22 or greater.

SSDS AND FLASH CHIPS
A Solid State Disk (SSD) is a memory device used to store data just like a hard drive
or a floppy drive on a desktop computer. The SSDs on an Octagon CPU can be one
of four types. They can be EPROM, flash, SRAM, and DRAM. These SSDs are
designated as SSD0, SSD1, and SSD2. These designators define a physical location
on the CPU board. A 5025A for example has three SSDs. SSD0 is the EPROM that
contains the BIOS and the DOS drive. SSD1 can be an EPROM or flash memory,
and SSD2 can be flash memory, an EPROM or an SRAM. The DRAM can be

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 3 of 3

configured as an additional RAM drive if needed. The user is able to define which
SSD is used as the boot device by making an entry into the setup parameters with a
utility called setup. This allows the user to boot from the BIOS EPROM or a flash
SSD that contains the application program. When an alternate operating system is
used this operating system is usually placed in the flash SSD.

The SSDs on an Octagon CPU are mapped into a 32K or a 64K window in memory.
The size of the window depends upon the CPU being used. The window size for a
particular CPU can be found in the user's manual for that CPU. Flash memory is
the most commonly used device in embedded computers. Most of the Octagon
systems take advantage of flash memory for storage of the operating system and the
applications programs.

QNX AND SSDS ON OCTAGON CPU CARDS
SSDs are referenced in QNX as sockets. This socket represents the logical location
of the solid state device. The SSDs are further divided physically into contiguous
regions. These regions are composed of memory devices that are the same type. The
regions can be further divided into multiple partitions. A partition must be
contained within a single region. This means that if you define a partition on a
device that has 512k regions, this partition must be less than or equal to 512K.

There are two types of partitions supported by the QNX embedded file system. The
first type is the image file system partition and the second type is the embedded file
system partition. The image partition allows the SSD to be bootable. This partition
stores the boot image for the system. The embedded file system partition stores a
QNX compatible file system. For example, the /bin and the /etc/config directories
would be placed in this partition. The embedded file system partitions functionality
depends upon the type of device it is implemented on. If it is placed on an EPROM,
then it is read only. If it is placed on a flash that has an EFSYS file that supports
read and writes, it will be a read/write partition.

USING THE EFSYS FILE SYSTEM COMMAND
The embedded file system manager is a stand-alone process similar to the FSYS file
manager. It is included when the boot image is built. If the system already has a
card information structure (CIS) on the SSD, the EFSYS file system manager will
read this from the SSD when the file system manager is started. If there is not a
CIS on the SSD, then the file system manager needs to be started with the correct
parameters in its command line. There are several parameters that need to be
passed to the EFSYS from the command line when it is first started. These are:

x socket number
x Jedec number
x size of the device
x block size
x offset

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 4 of 4

An example for a 5025A CPU with a 256K flash in SSD1 and a 512K SRAM in SSD2
would be:

efsys.5025A -r1,89BD,256k,256k -r2,0,512k,64k

This tells the EFSYS that it has a 256K flash as socket one that has a block size of
256k with a Jedec id of 0x89BD. It also tells the EFSYS that there is a 512K SRAM
in socket 2 that has a 64K block size. The zero in the SRAM portion tells the EFSYS
not to worry about a Jedec id number. The syntax used above only needs to be used
when there is no formatted SSD present. If the SSD is already formatted, the
EFSYS file system manager can be started with the following command:

Efsys.5025A &

MOUNTING POINTS FOR AN EFSYS
The standard mount and unmount commands used in QNX to change mount points
in a file system cannot be used with the EFSYS. To specify mount point of an
EFSYS, the mount point must be defined in the build file used to build the file
system image. If the system was to be mounted from the root directory of the EFS
partition you would put the following command line in the build file:

/bin32/Efsys.5025A $8000 Efsys.5025A -m/efs

This will cause the system to mount from the root of the EFS partition in the SRAM.

CREATING A BOOTABLE SSD
There are eight major steps to creating a bootable SSD on an Octagon CPU.
1. Create a disk boot image using the BUILDQNX command.
2. Create an embeddable boot image using the ROMQNX command
3. Start the EFSYS."OCTAGON CPU" file system manager.
4. Erase or initialize the SSD using the EFSINIT command.
5. Partition the SSD using the MKCIS command.
6. Format the image partition and install the boot image using the MKIMAGE

command
7. Format the file system partition using the EFSINIT command
8. Copy the correct files and directory structure to the EFS partition using the CP

or the CPBE commands.

The following examples can be used to create a basic embedded file system on the
5025A CPU, the PC-450 mobile industrial computer, and the 5066 CPU. The
complete directory structures and the files used for these examples can be found on
the Octagon BBS in the "downloads" conference. They are listed in the following
format:

"CPU NUMBER".TAR

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 5 of 5

5025A CPU EXAMPLE
The following is an example that will make an embedded file system on a 5025A
CPU using a 256K flash and a 512K SRAM. The flash will store the boot image.
The SRAM will store the file system. The files for this example can be found in the
/usr/EKit/examples/5025A subdirectory.

There are several files that need to be examined. The first two are the
FLASH.INFO and the SRAM.INFO files. These files help the MKCIS command
define what the SSD devices look like. It defines the size, the Jedec number, the
boot file used, and the partition type and size. These files are the input to the
MKCIS command in the MAKEFILE used to make the flash partitions. Following
are the FLASH.INFO and the SRAM.INFO files used with a 5025A CPU, a 256K
flash disk, and a 512K SRAM disk.

FLASH.INFO
#
Info file for Octagon Control Card 5025
#
Socket 1 (SSD1) - Intel/AMD 28F020 (256kx8 flash)
This socket contains a single image file system containing
the OS boot image.
#
region

size 256k
jedec 0x89bd
boot_file "/boot/sys/boot.5025a"

partition
type image
attribute largest

SRAM.INFO
#
Info file for Octagon Control Card 5025
#
Socket 2 (SSD2) - 512k SRAM
This socket contains a single EFS file system containing QNX
executables (non-bootable)
#
region

size 512k
type sram

partition
type efs
attribute largest

The next file that needs to be examined is the MAKEFILE used to create the EFSYS
partitions that are defined in the *.INFO files. This file is usually found in the sub-
directory that holds all the information needed to make an EFSYS system for the
CPU being used. For example, we keep files for creating a 5025A EFSYS system in
the users/EKit/examples/5025A sub-directory. To run this script you need to use the

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 6 of 6

GMAKE command. It will run the MAKEFILE found in the directory that it resides
in and do what is specified in that MAKEFILE.

MAKEFILE
#
Makefile for bootable Octagon 5025a
#
To make a bootable EPROM image suitable for SSD1
Efsys.file -f/tmp/rom -s1 &
make rom
<burn EPROM>
#
To make a bootable system with 28F020 in SSD1 and 512k SRAM in SSD2
make flash
make sram
#

NODE = 1

FLASH_RAW = //$(NODE)/dev/skt1
FLASH_IMG = //$(NODE)/dev/skt1img1

SRAM_RAW = //$(NODE)/dev/skt2
SRAM_EFS = //$(NODE)/efs2p1

ROM_RAW = /dev/skt1
ROM_IMG = /dev/skt1img1
ROM_EFS = /efs1p1

BOOT_IMAGES = /boot/sys

BOOTFILE = $(BOOT_IMAGES)/boot.5025a

EFS_FILES =/bin/login /bin/sh /bin/tinit /bin/cat /bin/ls \
/bin/sin /bin/shutdown /bin/Dev /bin/Dev.con /bin/rtc

To make a 1MB rom image for SSD1
rom : $(BOOTFILE) rom.info os.rom.image

mkcis -o$(ROM_RAW) rom.info
cat os.rom.image >$(ROM_IMG)
efsinit $(ROM_EFS)
mkdir $(ROM_EFS)/bin
mkdir $(ROM_EFS)/etc
mkdir $(ROM_EFS)/etc/config
cbpe -f /bin/login $(ROM_EFS)/bin/login
cbpe -f /bin/sh $(ROM_EFS)/bin/sh
cbpe -f /bin/tinit $(ROM_EFS)/bin/tinit
cbpe -f /bin/cat $(ROM_EFS)/bin/cat
cbpe -f /bin/ls $(ROM_EFS)/bin/ls
cbpe -f /bin/sin $(ROM_EFS)/bin/sin
cbpe -f /bin/shutdown $(ROM_EFS)/bin/shutdown
cbpe -f /bin/Dev $(ROM_EFS)/bin/Dev
cbpe -f /bin/Dev.con $(ROM_EFS)/bin/Dev.con
cbpe -f /bin/rtc $(ROM_EFS)/bin/rtc
cp -t sysinit $(ROM_EFS)/etc/config
cp -t passwd shadow $(ROM_EFS)/etc

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 7 of 7

romulate /tmp/rom.1

Then take the output of ROMULATE and burn it into your 1MB eprom
os.rom.image : os.rom.build

buildqnx n=$(NODE) os.rom.build tmp
romqnx -c -d0 tmp tmp2
-rm os.rom.image
mkimage -d10 -oos.rom.image tmp2
rm tmp tmp2

flash: flash.info $(BOOTFILE) os.flash.image
efsinit $(FLASH_RAW)
mkcis -o$(FLASH_RAW) flash.info
cat os.flash.image >$(FLASH_IMG)

os.flash.image : os.flash.build
buildqnx n=$(NODE) os.flash.build tmp
romqnx -c -d0 tmp tmp2
-rm os.flash.image
mkimage -d10 -oos.flash.image tmp2
rm tmp tmp2

sram: sram.info
mkcis -o$(SRAM_RAW) sram.info
efsinit $(SRAM_EFS)
mkdir $(SRAM_EFS)/bin
mkdir $(SRAM_EFS)/etc
mkdir $(SRAM_EFS)/etc/config
cbpe -f /bin/login $(SRAM_EFS)/bin/login
cbpe -f /bin/sh $(SRAM_EFS)/bin/sh
cbpe -f /bin/tinit $(SRAM_EFS)/bin/tinit
cbpe -f /bin/cat $(SRAM_EFS)/bin/cat
cbpe -f /bin/ls $(SRAM_EFS)/bin/ls
cbpe -f /bin/sin $(SRAM_EFS)/bin/sin
cbpe -f /bin/shutdown $(SRAM_EFS)/bin/shutdown
cbpe -f /bin/Dev $(SRAM_EFS)/bin/Dev
cbpe -f /bin/Dev.con $(SRAM_EFS)/bin/Dev.con
cbpe -f /bin/rtc $(SRAM_EFS)/bin/rtc
cp -t etc/config/sysinit $(SRAM_EFS)/etc/config
cp -t etc/passwd etc/shadow $(SRAM_EFS)/etc

clean:
-rm tmp tmp2

The final file that needs to be examined is the OS.FLASH.BUILD file. This file is
used by the BUILDQNX utility. The BUILDQNX utility is used to build a QNX boot
image. The boot image is a collection of individual processes combined into a file
image. This image is loaded into memory at boot time and is used to start the
system. The first line in the OS.FLASH.BUILD file is the first process to which
control is transferred when the system is starting up. It is responsible for starting
all the rest of the processes listed in the boot image. Processes can be added or
removed from the OS.FLASH.BUILD file. The processes included depend upon the
services that are needed at startup. There are some processes that have to be in the
boot image but others can be started after the system loads by putting them in the

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 8 of 8

SYSINIT file. The services that are necessary in the boot file are the Proc32
processes manager and the Slib16 shared library service. The EFSYS driver for the
CPU used also needs to be in the boot image. This allows the system to mount the
EFSYS partition or allows an alternate mount point to be specified. The boot image
should contain the minimum number of services needed for the system to start.
Listed below is the OS.FLASH.BUILD file used with a 5025A CPU

OS.FLASH.BUILD
/boot/sys/Proc32
$ 52000 Proc32 -l $n

/boot/sys/Slib16
$ 1 Slib16

/boot/sys/Slib32
$ 1 Slib32

/bin32/Efsys.5025a
$ 8000 Efsys.5025a -r1,89bd,256k,256k -r2,0,512k -m/

/bin/sinit
$ 1000 sinit TERM=qnx

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 9 of 9

PC-450 EXAMPLE
The following section is an example of an EFSYS system implemented on a PC-450
CPU. There are some differences from the 5025A example already outlined. The
first one is in the FLASH.INFO file below. There are two types of partitions defined
on the flash SSD. The first one is the boot image that is used to store the boot image
created by the BUILDQNX utility. The second one is the EFSYS partition that is
used to store the other services that will be used by the operation system once it is
running. This is a read/write file system and can be used as a disk. It can also be
used as the mount point for the file system if a hard drive is not available.

Note that the BIOS supplied by Octagon resides in the upper 512K of the lower
1 MB of the 2 MB flash disk (SSD1). This area can be overwritten by the EFSYS
driver if the command line parameters are not specified correctly. To prevent this, it
is important to specify a 512K offset for the EFSYS partition. To do this, you start
the EFSYS.PC450 driver with the following parameters the first time you run it.:

Efsys.pc450 -r1,89a0,512k &

This will protect your BIOS area. Once the CIS is created this way, you can shorten
it to EFSYS.PC450 & and leave out the command line parameters. Some users
prefer to always include the command line parameters. This keeps the structure of
the SSD clear to future users of the system and prevents any unintended erasing of
the BIOS. If the BIOS is accidentally erased, you should call the Applications
Engineering Group for assistance.

FLASH.INFO
Info file for Octagon PC450
#
Socket 1 (SSD1) - Intel 28F016 (2Mx8 flash)
#
0000k to 0512k Image file system with OS image
0512k to 1024k Used by BIOS
1024k to 2048k Embedded File system
#
region

jedec 0x89a0
size 512k
boot_file "/boot/sys/boot.pc450"

partition
type image
size 256k
attribute largest erase_align

region
jedec 0x89a0
size 1M
offset 1M

partition
type efs
size 512k
attribute largest erase_align

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 10 of 10

SRAM.INFO
Info file for Octagon Control Card 5025
#
Socket 2 (SSD2) - 512k SRAM
This socket contains a single EFS file system containing QNX
executables (non-bootable)
#
region

size 512k
type sram

partition
type efs
attribute largest

MAKEFILE
#
Makefile for bootable Octagon PC450
#
NODE = 1
FLASH_RAW = //$(NODE)/dev/skt1
FLASH_IMG = //$(NODE)/dev/skt1img1
BOOT_IMAGES = /boot/sys
BOOTFILE = $(BOOT_IMAGES)/boot.pc450
EFS_FILES = /bin/login /bin/sh /bin/tinit /bin/cat /bin/ls \

/bin/sin /bin/shutdown /bin/Dev /bin/Dev.con /bin/rtc \
/bin/Fsys /bin/Fsys.ide /bin/mount /bin/echo

flash: flash.info $(BOOTFILE) os.flash.image
efsinit /efs1p1
efsinit $(FLASH_RAW)
mkcis -o$(FLASH_RAW) flash.info
cat os.flash.image >$(FLASH_IMG)
mkdir /efs1p1/bin
mkdir /efs1p1/etc
mkdir /efs1p1/etc/config
cbpe -f /bin/login /efs1p1/bin/login
cbpe -f /bin/sh /efs1p1/bin/sh
cbpe -f /bin/tinit /efs1p1/bin/tinit
cbpe -f /bin/sinit /efs1p1/bin/sinit
cbpe -f /bin/cat /efs1p1/bin/cat
cbpe -f /bin/ls /efs1p1/bin/ls
cbpe -f /bin/sin /efs1p1/bin/sin
cbpe -f /bin/shutdown /efs1p1/bin/shutdown
cbpe -f /bin/Dev /efs1p1/bin/Dev
cbpe -f /bin/Dev.con /efs1p1/bin/Dev.con
cbpe -f /bin/Fsys /efs1p1/bin/Fsys
cbpe -f /bin/Fsys.ide /efs1p1/bin/Fsys.ide
cbpe -f /bin/echo /efs1p1/bin/echo
cbpe -f /bin/mount /efs1p1/bin/mount
cbpe -f /usr/EKit/bin/Efsys.new /efs1p1/bin/Efsys.new
cp -t etc/config/sysinit /efs1p1/etc/config
cp -t etc/passwd etc/shadow /efs1p1/etc
cp -t os.flash.image /efs1p1/.boot

os.flash.image : os.flash.build
buildqnx n=$(NODE) os.flash.build tmp
romqnx -c -d0 tmp tmp2

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 11 of 11

-rm os.flash.image
mkimage -oos.flash.image tmp2
rm tmp tmp2

clean:
-rm tmp tmp2

OS.FLASH.BUILD

/boot/sys/Proc32
$ 52000 Proc32 -l $n

/boot/sys/Slib16
$ 1 Slib16

/boot/sys/Slib32
$ 1 Slib32
#add the next three lines to boot from the file system on hd0
/bin/Fsys
$8000 Fsys

/bin/Fsys.ide
$1000 Fsys.ide

/bin/mount
$ 1000 mount -p /dev/hd0 /dev/hd0t77 /

/bin32/Efsys.pc450
#use the -m/ switch to boot from the file system on SSD0B. /
#you must remove the mount command for the hard drive to do this
#$ 8000 Efsys.pc450 -m/
$ 8000 Efsys.pc450

/bin/sinit
$ 1000 sinit TERM=qnx

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 12 of 12

5066 EXAMPLE
The following example is of a flash file system for a 5066 CPU with a 2 MB flash in
SSD1. The SSD is formatted as a 2 MB image partition that mounts onto an ATA
hard drive. This system could be set up with an EFSYS partition as well. The
FLASH.INFO would have to be modified to reflect a 512K image partition and a
1 MB EFSYS partition. The FLASH.INFO file would be similar to the one used in
the PC-450 CPU example. This allows the system to be mounted from the EFSYS
partition on SSD1.

FLASH.INFO
Info file for Octagon 5066
Socket 1 (SSD1) - INTEL 29F016 (2Mx8 flash)
0000k to 0128k Used by BIOS
0128k to 2048k Image
#
region

jedec 0x01ad
size 2M
boot_file "/boot/sys/boot.5066"

partition
type image
attribute largest erase_align

MAKEFILE
Makefile for bootable Octagon 5066
#
NODE = 1

SOCKET_RAW = skt2
SOCKET_IMG = skt2img1
SOCKET_EFS = efs2p1

FLASH_RAW = //$(NODE)/dev/$(SOCKET_RAW)
FLASH_IMG = //$(NODE)/dev/$(SOCKET_IMG)
DEST_EFS = //$(NODE)/$(SOCKET_EFS)

BOOT_IMAGES = /boot/sys
BOOTFILE = $(BOOT_IMAGES)/boot.5066

EFS_FILES = /bin/login /bin/sh /bin/tinit /bin/cat /bin/ls \
 /bin/sin /bin/shutdown /bin/Dev /bin/Dev.con /bin/rtc

flash: flash.info $(BOOTFILE) os.flash.image
efsinit $(FLASH_RAW)
efsinit $(FLASH_RAW)
mkcis -o$(FLASH_RAW) flash.info
cat os.flash.image >$(FLASH_IMG)

os.flash.image : os.flash.build

Octagon Systems Application Note #102

6510 W. 91st Ave. Westminster, CO USA 80030

Page 13 of 13

buildqnx n=$(NODE) os.flash.build tmp
romqnx -c -d0 tmp tmp2
-rm os.flash.image
mkimage -oos.flash.image tmp2
-rm tmp tmp2

clean:
-rm tmp tmp2

OS.FLASH.BUILD
/boot/sys/Proc32
$ 52000 Proc32 -l $n

/boot/sys/Slib16
$ 1 Slib16

/boot/sys/Slib32
$ 1 Slib32
#add the next three lines to boot from the file system on hd0
/bin/Fsys
$8000 Fsys

/bin/Fsys.ata
$1000 Fsys.ata

/bin/mount
$ 1000 mount -p /dev/hd0 /dev/hd0t77 /

#use the -m/ switch to boot from the file system on SSD1 /
#you must remove the mount command for the hard drive to do this

/bin32/Efsys.5066

$ 8000 Efsys.5066

/bin/sinit
$ 1000 sinit TERM=qnx

